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Horizontal Attacks



Side Channel Attacks

An attacker can recover sensitive information by listening on side-channels on a target
device (Power, EM, timing, ...).

Several attacks:

» Profiled: Able to characterize the leakage before the attack (Templates, Deep
Learning, ...)

» Unprofiled: Attack directly carried on target (SPA, DPA, ...).



» Single trace attack

» No profiling on open device possible, no leakage assessment, black box

» Usually applied on asymmetric implementations (RSA, ECC, ...).

» Commonly used clustering approach:
Divide trace into patterns, preprocessing steps (cutting, alignment, filtering, ...)
Points of Interest (Pol) selection with univariate clustering or dimensionality reduction
Multidimensional clustering

Attack success highly relies on the quality of the trace.



Impact of anomalies on Pol selection



Univariate anomalies model

Outliers (interquantile range)

Distribution tails

¢ R=[Q1 —«IQR, Q3 + «IQR]
IQR=Q35 — @1

. J

Saturated values

Min/max values of digital sampling vertical resolution, for 8bit:

z € £(8) = {—128,127}
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Cswap Pointer and Arith public datasets: ECC Scalar multiplication
» Arith dataset: Arithmetic swapping
» Pointer datset: Pointers swapping instead of values

We define the BRR as the percentage of correctly identified bits of the exponent scalar during
the clustering process.
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Anomalies in data
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Impact of anomalies on Pol selection

Clustering is not robust to anomalies in data, can cause centroids shift, singularities, ...
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Impact of anomalies on Pol selection

Clustering is not robust to anomalies in data, can cause centroids shift, singularities, ...
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Impact of anomalies on Pol selection

Clustering is not robust to anomalies in data, can cause centroids shift, singularities, ...
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Anomalies mitigation



Limits of simple mitigation

Mitigation by ablation

» Remove time points based on anomalies threshold

» Possibly loosing information about the leakage
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Limits of simple mitigation

Mitigation by ablation

» Remove time points based on anomalies threshold

» Possibly loosing information about the leakage

Mitigation by replacement

» Replace anomalies points with mean/median of non anomalies for each time
point

» Decrease separability of mixture components
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In this work, alternative methods are studied:
» Able to be trained in an unsupervised manner
» Leakage/information conservation
» Two approaches are considered:

: Unsupervised mitigation: Robust auto-encoder

Selfsupervised mitigation: Cycle generative adversarial networks



Auto-encoder

Built from a encoder/decoder (£,, Fy) network pair. Trained for input reconstruction.

Reconstruction Error

Input ——>»  Encoder Code Decoder ——» Output

L0, ) = [[X = Fp(E4(X))]]2



Robust auto-encoder unsupervised mitigation

Decomposition of input data to cleaned and anomalies matrices.
Prior on the anomalies amount.

Reconstruction Error

Input —>

Substract

Cleaned



The RAE aims at achieving the following decomposition:

X=L+S (1)
where:
» X: input patterns
» L: cleaned patterns
» S: extracted anomalies
The complete objective is given by:
L(0,¢) = ||L — Fo(Ey(L))[|2 + 7I[S]x (2)

Left term is optimized through gradient descent while right term is minized with a
proximal operator.



Impact on patterns
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While relevant, the RAE can suffer from some drawbacks:

» The RAE generates new synthetic patterns, this can cause side effects on non
anomalies points.

» In addition, it does not exploit any anomalies model. It is fully unsupervised

An alternative method is proposed to to include the anomalies models, based on
generative adversarial networks.



Generative Adversarial Networks

Generator

Discriminator Real or Fake ?

mci:nmgx Lean(G, D, X, Z) =E,..x log D(zx)
+E..zlog[l - D(G(2))]
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‘I\/Iultiplexer CycleGAN self-supervised mitigation

Matrix B

Real /Fake

Real /Fake

Discriminator A

Matrix A
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Multiplexer CycleGAN self-supervised mitigation

Complete loss is given by:
‘C(GAa GBa DA7 -DB) = LGAN(GAv DB» A7 B)

+ EGAN(GBaDA)B)A)
+ AMeye(Ga,GB)
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Multiplexer CycleGAN self-supervised mitigation

Complete loss is given by:
L(Ga,Gp,Da, D) = Lean(Ga, D, A, B)
+£GAN(GBaDA)BvA) (3)
+ AMeye(Ga,GB)

with consistency loss:

Leye(Ga; Gp) = EanallGp(Gala)) = allr

+ Epu||Ga(Gp (b)) — bl (4)



Multiplexer CycleGAN self-supervised mitigation

Complete loss is given by:

‘C(GAv G37 DA,DB) = »CGAN(GAv DB’ A7 B)
+£GAN(GBaDA,BvA) (3)
+ )\['cyc(GAy GB)

with consistency loss:

Leye(Ga,Gp) = EanallGp(Gala)) —allx
+Epp||Ga(GB (D) — bl

Aims at finding:

%, G = argminargmax £L(Ga,Gp,Da, Dp) (5)
Ga,Ggp Da,Dp



Multiplexer CycleGAN self-supervised mitigation
1. Build the anomalies matrix M such that:

S 1, if Tij € 5(8) \/Jii,]‘ ¢ R(l‘;J‘)
e 0, otherwise

(6)
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Multiplexer CycleGAN self-supervised mitigation

1. Build the anomalies matrix M such that:

M — {1, ifz;; €E8) Ve ¢ Rlz.j) (6)
0, otherwise
2. Split into A, B sets based on maximum Hamming distance:
argmax HW(m;. ®m;.), i#j (7)

i,j€{1,...,n}



Multiplexer CycleGAN self-supervised mitigation
1. Build the anomalies matrix M such that:

0, otherwise

2. Split into A, B sets based on maximum Hamming distance:

argmax HW(m,;.®&m;.), i#j (7)
i,7€{1,..., n}

3. Train the model with gradient descent (previous slide).



L1

1. Build the anomalies matrix M such that:

— 1, if Tij € 5(8) \Y Ti,j ¢ R(l‘iﬁj)
I 0, otherwise

2. Split into A, B sets based on maximum Hamming distance:

argmax HW(m;.®&m;.), i#j
i,je{1,...,n}

3. Train the model with gradient descent (previous slide).
4. Replace by generated values through multiplexers:

Al = muX(A, GB(B),MA) = (MA A\ GB(B)) V (ﬁMA A\ A)
B" = mux(B, GA(A), Mp) = (Mp A Ga(A)V (=M A B)



» Selective correction that include the anomaly models.
» Only values marked as anomalies are generated, others are untouched.
» Multiplexers add training stability for GANs, reduce complexity.

» Sets matching on Hamming distance allows optimal correction.



Results



Cswap Pointer Cswap Arith
Before RAE GAN | Before RAE GAN

Outliers (%) 432 536 1.67| 515 473 1.35
Saturation (%) || 30.27 1.19 10.22 | 1288 0.01 5.19
Total (%) 3330 6.55 11.85 | 1654 4.75 6.49

Percentage of outliers and extremes obtained on original patterns, after applying the
RAE and the CycleGAN. Best results are highlighted in bold.



Impact on distributions
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Figure: Empirical p.d.f of four samples before and after application of the RAE and CycleGAN
to mitigate abnormal values. Blue p.d.f corresponds to class ¢ = 0 (resp. red ¢ = 1).



Information conservation

No change in the global MI. !
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L1

Select k Pol with highest ¢t-values and apply multidimensional clustering.

BRR (%)
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v

Multidimensional clustering on the best k& Pol from Cler et al. 2023 unsupervised selection.
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Conclusion



Conclusion

Benefits

» Anomalies mitigation improves leakage exploitability

» Methods are applicable in a completely unsupervised context




Conclusion

» Anomalies mitigation improves leakage exploitability

» Methods are applicable in a completely unsupervised context

» Architecture choice and parameters tuning can be hard in practice

» Attack success still depends on the exploitation method




Benefits

» Anomalies mitigation improves leakage exploitability

» Methods are applicable in a completely unsupervised context

Limitations

» Architecture choice and parameters tuning can be hard in practice
» Attack success still depends on the exploitation method

Future work

~
\.

» Consider additional anomalies models

» Generalize on other targets/algorithms




Do you have any questions ?

» Read the thesis: hal.science/tel-04730413v1
» Paper: CASCADE 2025, soon to be published (Springer)
» Contact: g.cler@serma.com



	Horizontal Attacks
	Impact of anomalies on PoI selection
	Anomalies mitigation
	Results
	Conclusion

