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Side Channel Attacks

An attacker can recover sensitive information by listening on side-channels on a target
device (Power, EM, timing, ...).

Several attacks:

▶ Profiled: Able to characterize the leakage before the attack (Templates, Deep
Learning, ...)

▶ Unprofiled: Attack directly carried on target (SPA, DPA, ...).



▶ Single trace attack

▶ No profiling on open device possible, no leakage assessment, black box

▶ Usually applied on asymmetric implementations (RSA, ECC, ...).

▶ Commonly used clustering approach:

1 Divide trace into patterns, preprocessing steps (cutting, alignment, filtering, ...)

2 Points of Interest (PoI) selection with univariate clustering or dimensionality reduction

3 Multidimensional clustering

Attack success highly relies on the quality of the trace.
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Horizontal Attacks
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Univariate anomalies model

Outliers (interquantile range)

Distribution tails

x /∈ R = [Q1 − α IQR, Q3 + α IQR]

IQR = Q3 −Q1

Saturated values

Min/max values of digital sampling vertical resolution, for 8bit:

x ∈ ξ(8) = {−128, 127}



Cswap Pointer and Arith public datasets: ECC Scalar multiplication

▶ Arith dataset: Arithmetic swapping

▶ Pointer datset: Pointers swapping instead of values

We define the BRR as the percentage of correctly identified bits of the exponent scalar during
the clustering process.
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Considered Datasets



1Average anomalies Pointer:33.3%, Arith:16.5%
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Anomalies in data
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Impact of anomalies on PoI selection

Clustering is not robust to anomalies in data, can cause centroids shift, singularities,...
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Impact of anomalies on PoI selection

Clustering is not robust to anomalies in data, can cause centroids shift, singularities,...
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1BRR: Bit Recovery Rate
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Impact of anomalies on PoI selection

Clustering is not robust to anomalies in data, can cause centroids shift, singularities,...
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Anomalies mitigation
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Limits of simple mitigation

Mitigation by ablation

▶ Remove time points based on anomalies threshold

▶ Possibly loosing information about the leakage
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Limits of simple mitigation

Mitigation by ablation

▶ Remove time points based on anomalies threshold

▶ Possibly loosing information about the leakage

Mitigation by replacement

▶ Replace anomalies points with mean/median of non anomalies for each time
point

▶ Decrease separability of mixture components



In this work, alternative methods are studied:

▶ Able to be trained in an unsupervised manner

▶ Leakage/information conservation

▶ Two approaches are considered:
... Unsupervised mitigation: Robust auto-encoder
... Selfsupervised mitigation: Cycle generative adversarial networks
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Contribution - Mitigation with neural networks
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Auto-encoder

Built from a encoder/decoder (Eϕ,Fθ) network pair. Trained for input reconstruction.

L(θ, ϕ) = ||X−Fθ(Eϕ(X))||2
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Robust auto-encoder unsupervised mitigation

Decomposition of input data to cleaned and anomalies matrices.
Prior on the anomalies amount.
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Robust auto-encoder unsupervised mitigation

The RAE aims at achieving the following decomposition:

X = L+ S (1)

where:

▶ X: input patterns

▶ L: cleaned patterns

▶ S: extracted anomalies

The complete objective is given by:

L(θ, ϕ) = ||L−Fθ(Eϕ(L))||2 + τ ||S||1 (2)

Left term is optimized through gradient descent while right term is minized with a
proximal operator.
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Impact on patterns
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Limits of the RAE

While relevant, the RAE can suffer from some drawbacks:

▶ The RAE generates new synthetic patterns, this can cause side effects on non
anomalies points.

▶ In addition, it does not exploit any anomalies model. It is fully unsupervised

An alternative method is proposed to to include the anomalies models, based on
generative adversarial networks.
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Generative Adversarial Networks

min
G

max
D

LGAN(G,D,X,Z) = Ex∼X logD(x)

+ Ez∼Z log[1−D(G(z))]
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Multiplexer CycleGAN self-supervised mitigation
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Multiplexer CycleGAN self-supervised mitigation

Complete loss is given by:

L(GA, GB , DA, DB) = LGAN(GA, DB , A,B)

+ LGAN(GB , DA, B,A)

+ λLcyc(GA, GB)

(3)
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Multiplexer CycleGAN self-supervised mitigation

Complete loss is given by:

L(GA, GB , DA, DB) = LGAN(GA, DB , A,B)

+ LGAN(GB , DA, B,A)

+ λLcyc(GA, GB)

(3)

with consistency loss:

Lcyc(GA, GB) = Ea∼A||GB(GA(a))− a||1
+ Eb∼B ||GA(GB(b))− b||1

(4)

Aims at finding:

G∗
A, G

∗
B = argmin

GA,GB

argmax
DA,DB

L(GA, GB , DA, DB) (5)
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Multiplexer CycleGAN self-supervised mitigation

1. Build the anomalies matrix M such that:

mi,j =

{
1, if xi,j ∈ ξ(8) ∨ xi,j /∈ R(x:,j)

0, otherwise
(6)
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Multiplexer CycleGAN self-supervised mitigation

1. Build the anomalies matrix M such that:

mi,j =

{
1, if xi,j ∈ ξ(8) ∨ xi,j /∈ R(x:,j)

0, otherwise
(6)

2. Split into A,B sets based on maximum Hamming distance:

argmax
i,j∈{1,...,n}

HW(mi,: ⊕mj,:), i ̸= j (7)

3. Train the model with gradient descent (previous slide).
4. Replace by generated values through multiplexers:

A′′ = mux(A,GB(B),MA) = (MA ∧GB(B)) ∨ (¬MA ∧A)

B′′ = mux(B,GA(A),MB) = (MB ∧GA(A)) ∨ (¬MB ∧B)
(8)
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Benefits of proposed architecture

▶ Selective correction that include the anomaly models.

▶ Only values marked as anomalies are generated, others are untouched.

▶ Multiplexers add training stability for GANs, reduce complexity.

▶ Sets matching on Hamming distance allows optimal correction.



Results
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Mitigation results

Cswap Pointer Cswap Arith
Before RAE GAN Before RAE GAN

Outliers (%) 4.32 5.36 1.67 5.15 4.73 1.35
Saturation (%) 30.27 1.19 10.22 12.88 0.01 5.19
Total (%) 33.39 6.55 11.85 16.54 4.75 6.49

Table: Percentage of outliers and extremes obtained on original patterns, after applying the
RAE and the CycleGAN. Best results are highlighted in bold.
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Impact on distributions

0.0

0.1
Be

fo
re

Pointer 168 Pointer 650 Arith 1617 Arith 3028

0.0

0.1

G
A

N

0 25 50

x

0.0

0.1

RA
E

50 0

x
0 20

x
20 40

x
Figure: Empirical p.d.f of four samples before and after application of the RAE and CycleGAN
to mitigate abnormal values. Blue p.d.f corresponds to class c = 0 (resp. red c = 1).



1Estimated with MINE.
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Information conservation

No change in the global MI. 1
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Select k PoI with highest t-values and apply multidimensional clustering.
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Supervised selection - upper bound



Multidimensional clustering on the best k PoI from Cler et al. 2023 unsupervised selection.
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Unsupervised selection



Conclusion



30/31

Conclusion
Benefits

▶ Anomalies mitigation improves leakage exploitability

▶ Methods are applicable in a completely unsupervised context
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Conclusion
Benefits

▶ Anomalies mitigation improves leakage exploitability

▶ Methods are applicable in a completely unsupervised context

Limitations

▶ Architecture choice and parameters tuning can be hard in practice

▶ Attack success still depends on the exploitation method

Future work

▶ Consider additional anomalies models

▶ Generalize on other targets/algorithms



Do you have any questions ?

▶ Read the thesis: hal.science/tel-04730413v1

▶ Paper: CASCADE 2025, soon to be published (Springer)

▶ Contact: g.cler@serma.com
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Thank you for your attention
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