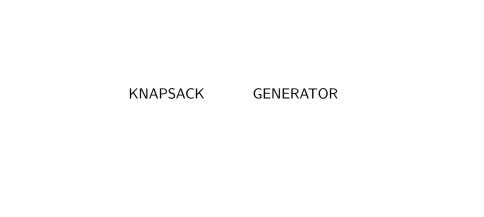
Variations on the Knapsack Generator

Florette Martinez

Université Picardie - École d'ingénieurs Jules Verne

May 16th, at Rennes



GENERATOR

KNAPSACK

Generator

Pseudo Random Number

KNAPSACK GENERATOR

Hard computational Pseudo Random Number problem Generator

Table of Contents

1 Definitions:

2 First attack against the Knapsack Generator

3 New attack against the Knapsack Generator

PRNG

PRNG

- Security is often based on perfect randomness
- "True" randomness is expensive

PRNG

- Security is often based on perfect randomness
- "True" randomness is expensive

- Shared randomness is common in cryptography
- Stream cipher
- Reducing communication in MPC protocols.

A PRNG is weak if:

• The flow is not indistinguishable from true randomness

A PRNG is weak if:

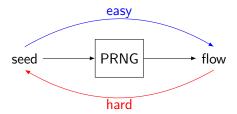
- The flow is not indistinguishable from true randomness
- Worse, further outputs are **predictable**

A PRNG is weak if:

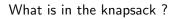
- The flow is not indistinguishable from true randomness
- Worse, further outputs are **predictable**
- Even worse, we can retrieve the seed from a reasonable number of outputs.

A PRNG is weak if:

- The flow is not indistinguishable from true randomness
- Worse, further outputs are predictable
- Even worse, we can retrieve the seed from a reasonable number of outputs.



(almost) Knapsack Problem



Subset Sum Problem

Mathematic version

```
\boldsymbol{\omega} = (\omega_1, \dots, \omega_n) \in \{0, N\}^n
The weight list:
                                        \mathbf{u} = (u_1, \dots, u_n) \in \{0, 1\}^n
The secret composition:
```

 $v = \sum \omega_i u_i = \langle \boldsymbol{\omega}, \mathbf{u} \rangle$ The target weight:

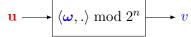
Subset Sum Problem

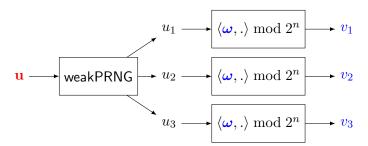
Mathematic version

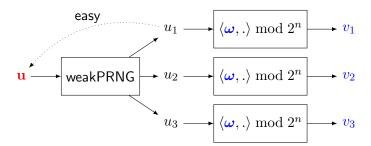
The weight list:
$$\boldsymbol{\omega} = (\omega_1, \dots, \omega_n) \in \{0, N\}^n$$

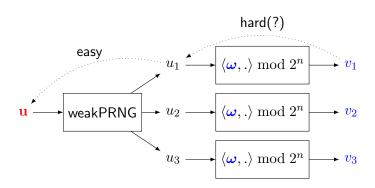
The secret composition: $\mathbf{u} = (u_1, \dots, u_n) \in \{0, 1\}^n$
The target weight: $v = \sum \omega_i u_i = \langle \boldsymbol{\omega}, \mathbf{u} \rangle$

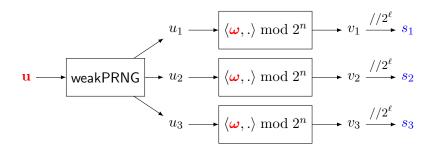
The Subset Sum Problem is NP-hard and remain hard if we replace v by $v \mod N$ as long as $N \simeq 2^n$.



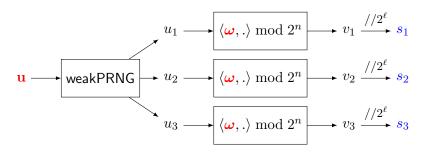








¹Rueppel, R.A., Massey, J.L.: Knapsack as a nonlinear function. In: IEEE Intern. Symp. of Inform. Theory, vol. 46 (1985)



We call δ_i the truncated bits : $v_i = 2^{\ell} s_i + \delta_i$.

¹Rueppel, R.A., Massey, J.L.: Knapsack as a nonlinear function. In: IEEE Intern. Symp. of Inform. Theory, vol. 46 (1985)

Table of Contents

1 Definitions:

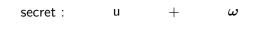
2 First attack against the Knapsack Generator

3 New attack against the Knapsack Generator

secret : u + ω

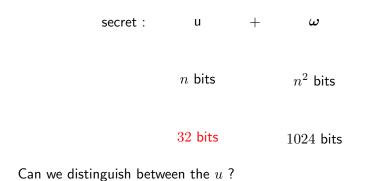
secret : u + ω

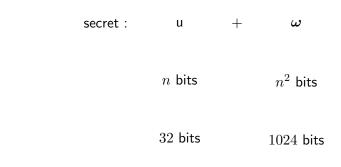
n bits n^2 bits



n bits n^2 bits

32 bits 1024 bits





Can we distinguish between the u ? Yes, with $\ensuremath{\mathsf{OMEGARETRIEVER}}$

Distinguish between u

We consider m outputs and $\mathbf{s} = (s_1, \dots, s_m)$.

OmegaRetriever: $\mathbf{u}, \mathbf{s} \to \pmb{\omega}'$ close to $\pmb{\omega}$ $\mathbf{u}', \mathbf{s} \to \pmb{\omega}''$ not close to $\pmb{\omega}$

Distinguish between u

We consider m outputs and $\mathbf{s} = (s_1, \dots, s_m)$.

OmegaRetriever:
$$\mathbf{u},\mathbf{s} \to \pmb{\omega}'$$
 close to $\pmb{\omega}$ $\mathbf{u}',\mathbf{s} \to \pmb{\omega}''$ not close to $\pmb{\omega}$

KnapsackGen (u, ω') will be close to KnapsackGen (u, ω) . KnapsackGen (u', ω'') will be not.

•
$$\mathbf{u} \stackrel{wPRNG}{\longrightarrow} u_1, \dots, u_m$$

•
$$\mathbf{u} \stackrel{wPRNG}{\longrightarrow} u_1, \dots, u_m$$

$$\bullet \ U = \begin{pmatrix} u_1 \\ \dots \\ u_m \end{pmatrix}$$

•
$$\mathbf{u} \overset{wPRNG}{\longrightarrow} u_1, \dots, u_m$$

$$\bullet \ U = \begin{pmatrix} u_1 \\ \dots \\ u_m \end{pmatrix}$$

•
$$\mathbf{v} = U \times \boldsymbol{\omega} \mod 2^n$$

•
$$\mathbf{u} \stackrel{wPRNG}{\longrightarrow} u_1, \dots, u_m$$

$$\bullet \ U = \begin{pmatrix} u_1 \\ \dots \\ u_m \end{pmatrix}$$

•
$$\mathbf{v} = U \times \boldsymbol{\omega} \mod 2^n$$

•
$$\mathbf{v} = 2^{\ell} \mathbf{s} + \boldsymbol{\delta}$$

•
$$\mathbf{u} \overset{wPRNG}{\longrightarrow} u_1, \dots, u_m$$

$$\bullet \ U = \begin{pmatrix} u_1 \\ \dots \\ u_m \end{pmatrix}$$

•
$$\mathbf{v} = U \times \boldsymbol{\omega} \mod 2^n$$

•
$$\mathbf{v} = 2^{\ell} \mathbf{s} + \boldsymbol{\delta}$$

•
$$\pmb{\delta}$$
 is small $(<2^\ell)$

We consider m outputs and a given \mathbf{u} .

•
$$\mathbf{u} \xrightarrow{wPRNG} u_1, \dots, u_m$$

• $U = \begin{pmatrix} u_1 \\ \dots \\ u_m \end{pmatrix}$

•
$$\mathbf{v} = U \times \boldsymbol{\omega} \mod 2^n$$

•
$$\mathbf{v} = 2^{\ell} \mathbf{s} + \boldsymbol{\delta}$$

• $\pmb{\delta}$ is small $(<2^\ell)$

$$U\times {\color{red}\omega}\equiv 2^\ell {\bf s}+{\color{red}\delta} \bmod 2^n$$

We consider m outputs and a given \mathbf{u} .

•
$$\mathbf{u} \xrightarrow{wPRNG} u_1, \dots, u_m$$
 • $\mathbf{v} = U \times \boldsymbol{\omega} \mod 2^n$
• $U = \begin{pmatrix} u_1 \\ \dots \\ u_m \end{pmatrix}$ • $\mathbf{v} = 2^{\ell} \mathbf{s} + \boldsymbol{\delta}$
• $\boldsymbol{\delta}$ is small $(< 2^{\ell})$

$$\boxed{U \times \boldsymbol{\omega} \equiv 2^{\ell} \mathbf{s} + \boldsymbol{\delta} \mod 2^n}$$

We construct T such that :

•
$$TU = Id \mod 2^n$$
 (polynomial)

OmegaRetriever from FSE 2011

We consider m outputs and a given \mathbf{u} .

•
$$\mathbf{u} \xrightarrow{wPRNG} u_1, \dots, u_m$$

• $\mathbf{v} = U \times \boldsymbol{\omega} \mod 2^n$
• $U = \begin{pmatrix} u_1 \\ \dots \\ u_m \end{pmatrix}$
• $\mathbf{v} = 2^{\ell} \mathbf{s} + \boldsymbol{\delta}$
• $\boldsymbol{\delta}$ is small $(< 2^{\ell})$

$$U \times \boldsymbol{\omega} \equiv 2^{\ell} \mathbf{s} + \boldsymbol{\delta} \mod 2^n$$

We construct T such that :

- $TU = Id \mod 2^n$ (polynomial)
- T small (implies solving CVPs)

OmegaRetriever from FSE 2011

We consider m outputs and a given \mathbf{u} .

•
$$\mathbf{u} \xrightarrow{wPRNG} u_1, \dots, u_m$$
 • $\mathbf{v} = U \times \boldsymbol{\omega} \mod 2^n$
• $U = \begin{pmatrix} u_1 \\ \dots \\ u_m \end{pmatrix}$ • $\mathbf{v} = 2^{\ell} \mathbf{s} + \boldsymbol{\delta}$
• $\boldsymbol{\delta}$ is small $(< 2^{\ell})$

$$U \times \boldsymbol{\omega} \equiv 2^{\ell} \mathbf{s} + \boldsymbol{\delta} \mod 2^n$$

We construct T such that :

- $TU = Id \mod 2^n$ (polynomial)
- T small (implies solving CVPs)

$$\omega = T2^{\ell} \mathbf{s} + T\delta$$

OmegaRetriever from FSE 2011 (part 2)

We now have

- δ small
- \bullet T small
- $\omega = T2^{\ell} \mathbf{s} + T \boldsymbol{\delta}$

OmegaRetriever from FSE 2011 (part 2)

We now have

- δ small
- \bullet T small
- $\omega = T2^{\ell}s + T\delta$

$$\boxed{\boldsymbol{\omega}' = T2^{\ell} \mathbf{s}}$$
$$\|\boldsymbol{\omega} - \boldsymbol{\omega}'\| \le \|T\| \|\boldsymbol{\delta}\|$$

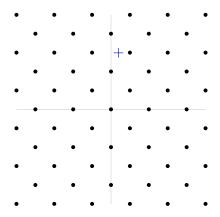
OmegaRetriever from FSE 2011 (part 2)

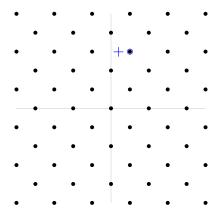
We now have

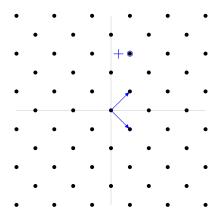
- δ small
- \bullet T small
- $\omega = T2^{\ell}s + T\delta$

$$\boxed{\boldsymbol{\omega}' = T2^{\ell} \mathbf{s}}$$
$$\|\boldsymbol{\omega} - \boldsymbol{\omega}'\| \le \|T\| \|\boldsymbol{\delta}\|$$

Experimental results are close to the bound.







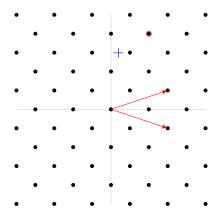


Table of Contents

① Definitions:

2 First attack against the Knapsack Generator

3 New attack against the Knapsack Generator

We consider m outputs and a given ${\bf u}.$

1.
$$\mathbf{v} = U \times \boldsymbol{\omega} \mod 2^n$$

2.
$$\mathbf{v} = 2^{\ell} \mathbf{s} + \boldsymbol{\delta}$$

3. δ is small.

We consider m outputs and a given \mathbf{u} .

1.
$$\mathbf{v} = U \times \boldsymbol{\omega} \mod 2^n$$

2.
$$\mathbf{v} = 2^{\ell} \mathbf{s} + \boldsymbol{\delta}$$

3. δ is small.

1.
$$\longrightarrow \mathbf{v} \in \Lambda$$

2. and 3. \longrightarrow **v** is close to 2^{ℓ} **s**

where
$$\Lambda = \{U \times x \bmod 2^n | x \in \mathbb{Z}^n\}$$

We consider m outputs and a given ${\bf u}.$

1.
$$\mathbf{v} = U \times \boldsymbol{\omega} \mod 2^n$$

2.
$$\mathbf{v} = 2^{\ell} \mathbf{s} + \boldsymbol{\delta}$$

3. δ is small.

1.
$$\longrightarrow \mathbf{v} \in \Lambda$$

2. and 3. \longrightarrow **v** is close to 2^{ℓ} **s**

where
$$\Lambda = \{U \times x \bmod 2^n | x \in \mathbb{Z}^n\}$$

$$\mathbf{v}' = \mathsf{CVP}(\Lambda, 2^{\ell}\mathbf{s})$$

We consider m outputs and a given ${\bf u}.$

1.
$$\mathbf{v} = U \times \boldsymbol{\omega} \mod 2^n$$

2.
$$\mathbf{v} = 2^{\ell} \mathbf{s} + \boldsymbol{\delta}$$

3. δ is small.

1.
$$\longrightarrow$$
 $\mathbf{v} \in \Lambda$

2. and 3. \longrightarrow **v** is close to 2^{ℓ} **s**

where
$$\Lambda = \{U \times x \bmod 2^n | x \in \mathbb{Z}^n\}$$

$$\mathbf{v}' = \mathsf{CVP}(\Lambda, 2^{\ell}\mathbf{s}) \neq \mathbf{v}$$

We consider m outputs and a given \mathbf{u} .

1.
$$\mathbf{v} = U \times \boldsymbol{\omega} \mod 2^n$$

2.
$$\mathbf{v} = 2^{\ell} \mathbf{s} + \boldsymbol{\delta}$$

3. δ is small.

1.
$$\longrightarrow \mathbf{v} \in \Lambda$$

2. and 3. \longrightarrow **v** is close to 2^{ℓ} **s**

where
$$\Lambda = \{U \times x \bmod 2^n | x \in \mathbb{Z}^n \}$$

$$\mathbf{v}' = \mathsf{CVP}(\Lambda, 2^{\ell}\mathbf{s}) \neq \mathbf{v}$$

But ω' defined as $U \times \omega' \equiv \mathbf{v}' \bmod 2^n$ is close to $\omega!$

Why does it work?

- $\mathbf{v} \mathbf{v}'$ is small and equal to $U \times (\boldsymbol{\omega} \boldsymbol{\omega}') \bmod 2^n$
- U small because in $\mathcal{M}(\{0,1\})$

Why does it work?

- $\mathbf{v} \mathbf{v}'$ is small and equal to $U \times (\boldsymbol{\omega} \boldsymbol{\omega}') \bmod 2^n$
- U small because in $\mathcal{M}(\{0,1\})$
- U small and $\omega \omega'$ small $\Rightarrow \mathbf{v} \mathbf{v}'$ small.

Why does it work?

- $\mathbf{v} \mathbf{v}'$ is small and equal to $U \times (\boldsymbol{\omega} \boldsymbol{\omega}') \bmod 2^n$
- U small because in $\mathcal{M}(\{0,1\})$
- U small and $\omega \omega'$ small $\Rightarrow \mathbf{v} \mathbf{v}'$ small.
- U small and $\mathbf{v} \mathbf{v}'$ small $\Rightarrow \omega \omega'$ small

In the first attack was constructed a small ${\cal T}$ pseudo inverse of ${\cal U}.$ Then

In the first attack was constructed a small T pseudo inverse of U. Then

•
$$\omega - \omega' = T \times (\mathbf{v} - \mathbf{v}') \bmod 2^n$$

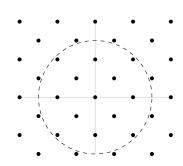
In the first attack was constructed a small ${\cal T}$ pseudo inverse of ${\cal U}.$ Then

- $\omega \omega' = T \times (\mathbf{v} \mathbf{v}') \bmod 2^n$
- We can bound T and $(\mathbf{v} \mathbf{v}')$

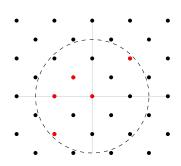
In the first attack was constructed a small ${\cal T}$ pseudo inverse of ${\cal U}.$ Then

- $\omega \omega' = T \times (\mathbf{v} \mathbf{v}') \mod 2^n$
- We can bound T and $(\mathbf{v} \mathbf{v}')$
- BUT $\|\omega \omega'\| \ll \|T\| \times \|(\mathbf{v} \mathbf{v}')\|$

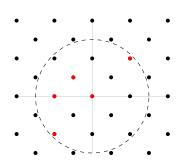
1) We know that $\mathbf{v} - \mathbf{v}'$ is small $(\leq K)$ and in Λ .



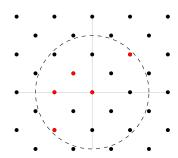
- 1 We know that $\mathbf{v} \mathbf{v}'$ is small $(\leq K)$ and in Λ .
- $\text{ If } \|x\| < K/\|U\|, \text{ then } \\ \|Ux\| < K.$



- 1 We know that $\mathbf{v} \mathbf{v}'$ is small $(\leq K)$ and in Λ .
- $\text{ If } \|x\| < K/\|U\|, \text{ then } \\ \|Ux\| < K.$
- 3 How do I know that $(\mathbf{v} \mathbf{v}')$ is a red point ?



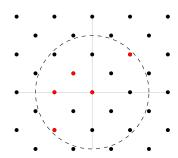
- 1 We know that $\mathbf{v} \mathbf{v}'$ is small $(\leq K)$ and in Λ .
- $\text{ If } \|x\| < K/\|U\|, \text{ then } \\ \|Ux\| < K.$
- 3 How do I know that $(\mathbf{v} \mathbf{v}')$ is a red point ?



We denote A_K the set of red points

$$|A_K| = (2 \times \lfloor K/\|U\|\rfloor - 1)^n$$

- 1 We know that $\mathbf{v} \mathbf{v}'$ is small $(\leq K)$ and in Λ .
- $\text{ If } \|x\| < K/\|U\|, \text{ then } \\ \|Ux\| < K.$
- 3 How do I know that $(\mathbf{v} \mathbf{v}')$ is a red point?

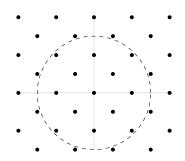


We denote A_K the set of red points

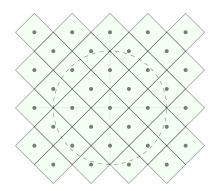
$$|A_K| = (2 \times \lfloor K/\|U\| \rfloor - 1)^n$$

We denote B_K the set of points in the ball

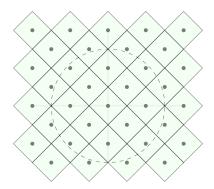
How many point in B_K ?



How many point in B_K ?



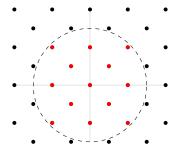
How many point in B_K ?



Gaussian Heuristic : $|B_K| \simeq Volume(Ball)/Volume(\Lambda)$

In the case where n=32, m=42 and $\ell \leq 15$,

$$|A_K| \ge |B_K|$$
 with $K = 2^{\ell+1}$



Thus $\mathbf{v} - \mathbf{v}'$ is a red point and $\|\boldsymbol{\omega} - \boldsymbol{\omega}'\| < K/\|U\|$.

Experimental results

ℓ	5		10		15		20		25	
m	34	40	34	40	34	40	35	40	39	40
√bits (over 32)	27	28	22	23	5	18	4	13	6	8

Figure: Quality of $\boldsymbol{\omega'}$ for n=32

ℓ	5		10		15		20
\overline{m}	34	40	35	40	36	40	41
√ bits (over 32)	10	22	10	17	8	12	6

Figure: Quality of $\pmb{\omega'}$ for n=32 for FSE 2011 algorithm

Thank you for your attention,