# On cycles of pairing-friendly abelian varieties

Based on joint work with Craig Costello and Michael Naehrig

Maria Corte-Real Santos ENS Lyon and CNRS

## Motivation

## Pairing-based proof systems

• Our motivation comes from non-interactive zero-knowledge proofs.

## Pairing-based proof systems

- Our motivation comes from non-interactive zero-knowledge proofs.
- based zk-SNARKs with *recursive composition* of proofs.

• In 2014, Ben-Sasson, Chiesa, Tromer and Virza realised efficient pairing-

## Pairing-based proof systems

- Our motivation comes from non-interactive zero-knowledge proofs.
- based zk-SNARKs with *recursive composition* of proofs.
- The core ingredient are cycles of pairing-friendly elliptic curves.



• In 2014, Ben-Sasson, Chiesa, Tromer and Virza realised efficient pairing-

## Pairing-friendly cycles of elliptic curves

**Definition** [Ben-Sasson, Chiesa, Tromer, Virza '14]

such that

and E, E' are pairing-friendly.

A (2-)cycle of pairing-friendly elliptic curves is a pair of elliptic curves  $E/\mathbb{F}_p$  and  $E'/\mathbb{F}_q$ 

### $q = \#E(\mathbb{F}_p)$ and $p = \#E'(\mathbb{F}_q)$



## Pairing-friendly cycles of elliptic curves

**Definition** [Ben-Sasson, Chiesa, Tromer, Virza '14]

such that

and *E*, *E'* are pairing-friendly.

A (2-)cycle of pairing-friendly elliptic curves is a pair of elliptic curves  $E/\mathbb{F}_p$  and  $E'/\mathbb{F}_q$ 

### $q = \#E(\mathbb{F}_p)$ and $p = \#E'(\mathbb{F}_q)$





## Main example of a cycle

#### Example: 2-cycle of Miyaji, Nakabayashi and Takano (MNT) curves

### (k, k') = (4, 6)







• MNT cycles known prior to pairing-based proof popularity [Karabina, Teske '08]

- MNT cycles known prior to pairing-based proof popularity [Karabina, Teske '08] • Since then, no new 2-cycle constructions have been found

- MNT cycles known prior to pairing-based proof popularity [Karabina, Teske '08] • Since then, no new 2-cycle constructions have been found
- Several negative/impossibility results

- MNT cycles known prior to pairing-based proof popularity [Karabina, Teske '08] • Since then, no new 2-cycle constructions have been found
- Several negative/impossibility results

Chiesa, Chia, Weidner '19

- MNT cycles known prior to pairing-based proof popularity [Karabina, Teske '08] • Since then, no new 2-cycle constructions have been found
- Several negative/impossibility results
  - Chiesa, Chia, Weidner '19
  - Bellés-Muñoz, Jiménez Urroz, Silva '23

- MNT cycles known prior to pairing-based proof popularity [Karabina, Teske '08] • Since then, no new 2-cycle constructions have been found
- Several negative/impossibility results
  - Chiesa, Chia, Weidner '19
  - Bellés-Muñoz, Jiménez Urroz, Silva '23
- Chiesa, Chia, Weidner explored  $\bullet$



... but Hasse interval shackles this!

- MNT cycles known prior to pairing-based proof popularity [Karabina, Teske '08] • Since then, no new 2-cycle constructions have been found
- Several negative/impossibility results
  - Chiesa, Chia, Weidner '19
  - Bellés-Muñoz, Jiménez Urroz, Silva '23
- Chiesa, Chia, Weidner explored

To overcome these impossibility results, previous works relax *pairing-friendly* or look at 2-chains.



... but Hasse interval shackles this!



## (Short) Preliminaries

An **elliptic curve** *E* over finite field  $\mathbb{F}_q$  ( $q = p^{\bullet}, p \neq 2, 3$ ) is a smooth curve

 $E: y^2 = x^3 + ax + b,$ 



# Elliptic Curves for Cryptography An elliptic curve *E* over finite field $\mathbb{F}_q$ ( $q = p^{\bullet}, p \neq 2, 3$ ) is a smooth curve $E: y^2 = x^3 + ax + b,$ Q Elliptic curves form a group $E(\mathbb{F}_q)$ under addition of point



# Elliptic Curves for Cryptography An elliptic curve *E* over finite field $\mathbb{F}_q$ ( $q = p^{\bullet}, p \neq 2, 3$ ) is a smooth curve $E: y^2 = x^3 + ax + b,$ Elliptic curves form a group $E(\mathbb{F}_q)$ under addition of point



# Elliptic Curves for Cryptography An elliptic curve *E* over finite field $\mathbb{F}_q$ ( $q = p^{\bullet}, p \neq 2, 3$ ) is a smooth curve $E: y^2 = x^3 + ax + b,$ Elliptic curves form a group $E(\mathbb{F}_q)$ under addition of point



An elliptic curve *E* over finite field  $\mathbb{F}_q$  ( $q = p^{\bullet}, p \neq 2, 3$ ) is a smooth curve  $E: y^2 = x^3 + ax + b$ ,

where  $a, b \in \mathbb{F}_q$ .

Elliptic curves form a group  $E(\mathbb{F}_q)$  under **addition of points**. Identity is denoted  $\mathcal{O}$ .

- An **elliptic curve** *E* over finite field  $\mathbb{F}_q$  ( $q = p^{\bullet}, p \neq 2,3$ ) is a smooth curve  $E: y^2 = x^3 + ax + b$ ,
- where  $a, b \in \mathbb{F}_q$ . Elliptic curves form a group  $E(\mathbb{F}_q)$  under **addition of points**. Identity is denoted  $\mathcal{O}$ . Another useful operation is **scalar multiplication**:
  - For  $a \in \mathbb{Z}$  and point  $P \in E(\mathbb{F}_q)$ , [a]P = P + ... + P
- $P = P + \dots + P$ a

- An elliptic curve *E* over finite field  $\mathbb{F}_q$  ( $q = p^{\bullet}, p \neq 2, 3$ ) is a smooth curve  $E: y^2 = x^3 + ax + b$ ,
- where  $a, b \in \mathbb{F}_q$ .
- Elliptic curves form a group  $E(\mathbb{F}_q)$  under **addition of points**. Identity is denoted  $\mathcal{O}$ . Another useful operation is scalar multiplication:
  - For  $a \in \mathbb{Z}$  and point  $P \in E(\mathbb{F}_a)$ , [a]P = P + ... + P
- The order of the point is the smallest positive  $n \in \mathbb{Z}$  such that  $[n]P = \emptyset$ .  $E(\mathbb{F}_q)[n]$  is the subgroup of *n*-torsion points (points whose order divides *n*).

a

- An elliptic curve *E* over finite field  $\mathbb{F}_q$  ( $q = p^{\bullet}, p \neq 2, 3$ ) is a smooth curve  $E: y^2 = x^3 + ax + b$ ,
- where  $a, b \in \mathbb{F}_q$ .
- Elliptic curves form a group  $E(\mathbb{F}_q)$  under **addition of points**. Identity is denoted  $\mathcal{O}$ . Another useful operation is scalar multiplication:
  - For  $a \in \mathbb{Z}$  and point  $P \in E(\mathbb{F}_a)$ , [a]P = P + ... + P
- The order of the point is the smallest positive  $n \in \mathbb{Z}$  such that  $[n]P = \emptyset$ An elliptic curve is supersingular if  $E(\overline{\mathbb{F}}_{a})$  has no points of order p, otherwise ordinary.

a



#### Elliptic curves E

#### Elliptic curves E

Principally polarised abelian varieties A

#### A pairing is a non-degenerate bilinear map





(additive) group • of prime order  $\ell$  $e: G_1 \times G_2 \to G_T$ (multiplicative) group of prime order  $\ell$ 

#### A pairing is a non-degenerate bilinear map

- **Non-degenerate:**  $e(P_1, P_2) = 1_{G_T}$  for all  $P_2 \in G_2$  if and only if  $P_1 = 0_{G_1}$  $e(P_1, P_2) = 1_{G_T}$  for all  $P_1 \in G_1$  if and only if  $P_2 = 0_{G_2}$ **Bilinear:** For all  $P_1, Q_1 \in G_1$  and  $P_2, Q_2 \in G_2$  we have
  - $e(P_1 + Q_1, P_2) = e(P_1, P_2)e(Q_1, P_2)$  and  $e(P_1, P_2 + Q_2) = e(P_1, P_2)e(P_1, Q_2)$

## Pairings

#### $e: G_1 \times G_2 \to G_T$

## Pairings

 $e: E(\mathbb{F}_{p^u})[\ell] \times$ 

For an elliptic curve, the  $\ell$ -Weil pairing (for prime  $\ell$  with  $\ell$ -torsion defined over  $\mathbb{F}_{p^u}$ ) is the pairing

$$\langle E(\mathbb{F}_{p^u})[\mathscr{C}] \to \mu_{\mathscr{C}} \subseteq \mathbb{F}_{p^{uk}}^{\times}$$

where k is the embedding degree with respect to  $\ell$ : the smallest natural number k such that  $\ell \mid (p^u)^k - 1$ .

## Pairings

For an elliptic curve, the  $\ell$ -Weil pairing (for prime  $\ell$  with  $\ell$ -torsion defined over  $\mathbb{F}_{p^{\mu}}$ ) is the pairing

 $e: E(\mathbb{F}_{p^u})[\ell] \times$ 

For security, we need the DLP to be hard in  $\mathbb{F}_{p^{uk}}^{\times}$  so we want to maximise the embedding degree (while the pairing still be efficiently computable).

We also need  $\ell$  to be large enough so that the ECDLP is hard in  $E(\mathbb{F}_{p^u})[\ell]$ ; best attack is generic and runs in  $O(\sqrt{l})$ .

$$(E(\mathbb{F}_{p^u})[\ell] \to \mu_{\ell} \subseteq \mathbb{F}_{p^{uk}}^{\times}$$

where k is the embedding degree with respect to  $\ell$ : the smallest natural number k such that  $\ell \mid (p^u)^k - 1$ .

## Pairings

For an elliptic curve, the  $\ell$ -Weil pairing (for prime  $\ell$  with  $\ell$ -torsion defined over  $\mathbb{F}_{p^u}$ ) is the pairing

 $e: E(\mathbb{F}_{p^u})[\ell] \times$ 

where k is the embedding degree with respect to  $\ell$ : the smallest natural number k such that  $\ell \mid (p^u)^k - 1$ .

Paring friendly with respect to q

$$\langle E(\mathbb{F}_{p^u})[\mathscr{C}] \to \mu_{\mathscr{C}} \subseteq \mathbb{F}_{p^{uk}}^{\times}$$



#### Elliptic curves

#### We can generalise the $\ell$ -Weil pairing for principally polarised abelian varieties.

Principally polarised abelian varieties

#### Elliptic curves

#### We can generalise the $\ell$ -Weil pairing for principally polarised abelian varieties.

### **Embedding Degree**

Principally polarised abelian varieties

#### Elliptic curves

#### We can generalise the $\ell$ -Weil pairing for principally polarised abelian varieties.

#### **Embedding Degree**

Principally polarised abelian varieties

#### **Cryptographic Exponent**

For large enough  $\ell$ , the *cryptographic exponent*  $c_A$ of *A* is such that  $(p^u)^{c_A} = p^r$ , with *r* the smallest integer such that  $\ell \mid p^r - 1$ .

#### Elliptic curves

#### We can generalise the $\ell$ -Weil pairing for principally polarised abelian varieties.

### **Embedding Degree**

When u > 1, r can be smaller than uk

Principally polarised abelian varieties



#### **Cryptographic Exponent**

For large enough  $\ell$ , the *cryptographic exponent*  $c_A$ of *A* is such that  $(p^u)^{c_A} = p^r$ , with *r* the smallest integer such that  $\ell \mid p^r - 1$ .

#### Elliptic curves

#### We can generalise the $\ell$ -Weil pairing for principally polarised abelian varieties.

#### **Embedding Degree**

Principally polarised abelian varieties

#### **Cryptographic Exponent**

For large enough  $\ell$ , the cryptographic exponent  $c_A$ of *A* is such that  $(p^u)^{c_A} = p^r$ , with *r* the smallest integer such that  $\ell \mid p^r - 1$ .

> Captures the ratio between the field of definition of *A* and where the  $\ell$ -Weil pairing is defined.


#### Abelian varieties

Elliptic curves

We can generalise the  $\ell$ -Weil pairing for principally polarised abelian varieties.

#### **Embedding Degree**

**Remark:** the larger the cryptographic exponent is, the smaller  $p^u$  can be chosen, making arithmetic in the field of definition more efficient while still ensuring DLP security in the finite field group.

Principally polarised abelian varieties

#### **Cryptographic Exponent**

For large enough  $\ell$ , the *cryptographic exponent*  $c_A$ of A is such that  $(p^u)^{c_A} = p^r$ , with r the smallest integer such that  $\ell \mid p^r - 1$ .

# The Ideal Situation

A 2-cycle of two prime order elliptic curves, both of which have (the same) embedding degree that balances the ECDLP and DLP securities of all groups involved.

## degree that balances the ECDLP and DLP securities of all groups involved.



## degree that balances the ECDLP and DLP securities of all groups involved.







## degree that balances the ECDLP and DLP securities of all groups involved.





## degree that balances the ECDLP and DLP securities of all groups involved.

| Security level                      | 80   | 112  | 128  |
|-------------------------------------|------|------|------|
| Req. ext. field<br>size             | 1184 | 3012 | 3968 |
| <b>Dream cycles</b> $p \approx q$   | 160  | 224  | 256  |
| <b>MNT reality</b><br>$p \approx q$ | 296  | 753  | 992  |







# Overview

## Our generalisation

We instead consider pairing-friendly cycles of abelian varieties. We say

q, p (respectively).

#### **Differences:**

(i) A and B can be abelian varieties of any dimension (ii) A and B can be defined over extension fields (iii) p and q need only divide the respective group orders of B and A

- $A/\mathbb{F}_{p^u}$  and  $B/\mathbb{F}_{q^v}$
- form a cycle if  $q | #A(\mathbb{F}_{p^u})$  and  $p | #B(\mathbb{F}_{q^v})$  and A, B are pairing-friendly with respect to



# High-level strategy

## varieties

1) A and B are simple: i.e., not isomorphic to a product of lower dimensional abelian

- varieties
- 2) A is supersingular of dimension  $g \ge 1$ : exploiting existing constructions of Pujolàs, Ritzenthaler, Smith '09)

1) A and B are simple: i.e., not isomorphic to a product of lower dimensional abelian

supersingular pairing-friendly abelian varieties of dimension  $\geq 1$  (e.g., Galbraith,

- varieties
- 2) A is supersingular of dimension  $g \ge 1$ : exploiting existing constructions of Pujolàs, Ritzenthaler, Smith '09)

1) A and B are simple: i.e., not isomorphic to a product of lower dimensional abelian

supersingular pairing-friendly abelian varieties of dimension  $\geq 1$  (e.g., Galbraith,

3)  $A(\mathbb{F}_{p^u})$  is of prime order q: alongside supersingularity, this implies  $q \equiv 1 \mod p$ , which means that B is pairing-friendly with respect to p; but, this forces  $c_B = 1$ .

- 1) A and B are simple: i.e., not isomorphic to a product of lower dimensional abelian varieties
- 2) A is supersingular of dimension  $g \ge 1$ : exploiting existing constructions of supersingular pairing-friendly abelian varieties of dimension  $\ge 1$  (e.g., Galbraith, Pujolàs, Ritzenthaler, Smith '09)
- 3)  $A(\mathbb{F}_{p^u})$  is of prime order q: alongside supersingularity, this implies  $q \equiv 1 \mod p$ , which means that B is pairing-friendly with respect to p; but, this forces  $c_B = 1$ .
- 4) *B* is of dimension 1: as  $c_B = 1$ , having *B* as an elliptic curve allows the most straightforward construction of a cycle with most efficient arithmetic.

- varieties
- 2) A is supersingular of dimension  $g \ge 1$ : exploiting existing constructions of Pujolàs, Ritzenthaler, Smith '09)
- 4) B is of dimension 1: as  $c_B = 1$ , having B as an elliptic curve allows the most straightforward construction of a cycle with most efficient arithmetic.

1) A and B are simple: i.e., not isomorphic to a product of lower dimensional abelian

supersingular pairing-friendly abelian varieties of dimension  $\geq 1$  (e.g., Galbraith,

3)  $A(\mathbb{F}_{p^u})$  is of prime order q: alongside supersingularity, this implies  $q \equiv 1 \mod p$ , which means that B is pairing-friendly with respect to p; but, this forces  $c_R = 1$ .

**To counter:** find large *v* such that *v* is the smallest integer with  $B[p] \subseteq B(\mathbb{F}_{q^{v}})$ 



#### Supersingular?

#### Security



#### Supersingular?

#### Security

#### **High-dimensional** abelian varieties?



#### Supersingular?

#### Security

#### **High-dimensional** abelian varieties?

#### Within the SNARK ecosystem?



### Towards optimal cycles

**Recall:** An optimal cycle for  $\lambda$ -bit security would be one where

- $p \approx q \approx 2^{2\lambda}$
- Likewise for the *p*-Weil pairing of *B*

• q-Weil pairing of A map into an extension field large enough to achieve  $\lambda$ -bits of security against state-of-the-art DLP attacks.



### Towards optimal cycles

**Recall:** An optimal cycle for  $\lambda$ -bit security would be one where

- $p \approx q \approx 2^{2\lambda}$
- Likewise for the *p*-Weil pairing of *B*

with an "optimal" B... but there is not negative result saying they cannot exist.

• q-Weil pairing of A map into an extension field large enough to achieve  $\lambda$ -bits of security against state-of-the-art DLP attacks.

**This work:** Give constructions of A where  $p \approx 2^{2\lambda}$  is indeed as small as possible. With our choices and restrictions, we cannot pair this





# Constructions

#### Constructions Let's focus on two constructions...

#### First construction



#### First construction

 $p \equiv 2 \mod 3$ , u = 2u' with u' even such that  $q = p^u - p^{u/2} + 1$  is prime

- supersingular elliptic curve defined over  $\mathbb{F}_{p^u}$ A/Ŀ
- $#A(\mathbb{F}_{p^u}) = q$
- cryptographic exponent  $c_A = 3$ w.r.t. *q*

Proposition 2 gives the explicit construction.

p > 3 prime, *u* even such that  $q = p^{u} + p^{u/2} + 1$  is prime

supersingular elliptic  $\bullet$ curve defined over  $\mathbb{F}_{a^2}$ 

• 
$$p \mid \#B(\mathbb{F}_{q^2})$$

cryptographic exponent  $c_B = 1$  w.r.t. p

Proposition 5 gives the explicit construction.

 $B/F_{2}$ 



$$p = 2^{160} - 44159$$
$$\mathbb{F}_{p^2} = \mathbb{F}_p(\alpha) \text{ with } \alpha^2 = 3$$
$$\mathbb{F}_{p^4} = \mathbb{F}_{p^2}(\beta) \text{ with } \beta^2 = \alpha$$



### Example #1

 $q = p^4 - p^2 + 1 \approx 2^{640}$ 

### Summary of constructions

| Target<br>security | MNT cycle |     |       |          | This work |     |         |     |               |         |
|--------------------|-----------|-----|-------|----------|-----------|-----|---------|-----|---------------|---------|
|                    | p         | q   | $p^k$ | $q^{k'}$ | dim(A)    | p   | $p^{u}$ | q   | $(p^u)^{c_A}$ | $q^{v}$ |
| 80                 | 298       | 298 | 1192  | 1788     | 1         | 160 | 640     | 640 | 1920          | 1280    |
| 112                |           |     |       |          |           |     |         |     |               |         |
| 128                |           |     |       |          |           |     |         |     |               |         |

#### Second construction

Let  $g = 2^{\ell}$  with  $\ell \ge 0$ . Let u = 2u' with u' odd and  $q = p^{ug} - p^{ug/2} + 1$  prime.

- supersingular abelian variety over  $\mathbb{F}_{p^u}$ of dimension g  $A/F_{D^{u}}$
- $#A(\mathbb{F}_{p^u}) = q$
- cryptographic exponent  $c_A = 3 \cdot 2^{g-1}$ w.r.t. *q*

Theorem 4 gives the explicit construction. In particular, there is a natural identification of  $A(\mathbb{F}_{p^u})$  with a subgroup of  $E(\mathbb{F}_{p^{ur}})$  with r = 2g and *E* as in Proposition 1. Relies heavily on work by Rubin and Silverberg.



#### Second construction

Let  $g = 2^{\ell}$  with  $\ell \ge 0$ . Let u = 2u' with u' odd and  $q = p^{ug} - p^{ug/2} + 1$  prime.

- supersingular abelian variety over  $\mathbb{F}_{p^u}$ of dimension g  $A/F_{D^{u}}$
- $\#A(\mathbb{F}_{p^u}) = q$
- cryptographic exponent  $c_A = 3 \cdot 2^{g-1}$ w.r.t. *q*

Theorem 4 gives the explicit construction. In particular, there is a natural identification of  $A(\mathbb{F}_{p^u})$  with a subgroup of  $E(\mathbb{F}_{p^{ur}})$  with r = 2g and *E* as in Proposition 1. Relies heavily on work by Rubin and Silverberg.



### Second construction

Let  $g = 2^{\ell}$  with  $\ell \ge 0$ . Let u = 2u' with u' odd and  $q = p^{ug} - p^{ug/2} + 1$  prime.

- supersingular abelian variety over  $\mathbb{F}_{p^u}$ of dimension g
- $#A(\mathbb{F}_{p^u}) = q$
- cryptographic exponent  $c_A = 3 \cdot 2^{g-1}$ w.r.t. q

Theorem 4 gives the explicit construction. In particular, there is a natural identification of  $A(\mathbb{F}_{p^u})$  with a subgroup of  $E(\mathbb{F}_{p^{ur}})$  with r = 2g and E as in Proposition 1. Relies heavily on work by Rubin and Silverberg.

#### As before....

p > 3 prime, *u* even such that  $q = p^{ug} - p^{ug/2} + 1$  is prime

- supersingular elliptic curve defined over  $\mathbb{F}_{q^2}$
- $p \mid \#B(\mathbb{F}_{q^2})$
- cryptographic exponent  $c_B = 1$  w.r.t. p

Proposition 5 gives the explicit construction.

 $B/\mathbb{F}$ 







### Example #2

 $q = p^4 - p^2 + 1 \approx 2^{640}$ 

### Summary of constructions

| Target   | MNT cycle |     |       |          | This work |            |            |            |               |              |
|----------|-----------|-----|-------|----------|-----------|------------|------------|------------|---------------|--------------|
| security | р         | q   | $p^k$ | $q^{k'}$ | dim(A)    | р          | $p^{u}$    | q          | $(p^u)^{c_A}$ | $q^{v}$      |
| 80       | 298       | 298 | 1192  | 1788     | 1<br>2    | 160<br>160 | 640<br>320 | 640<br>640 | 1920<br>1920  | 1280<br>1280 |
|          |           |     |       |          |           |            |            |            |               |              |
|          |           |     |       |          |           |            |            |            |               |              |
|          |           |     |       |          |           |            |            |            |               |              |

### Summary of constructions

| Target<br>security | MNT cycle |     |       |          | This work   |                            |                            |                      |                       |                      |
|--------------------|-----------|-----|-------|----------|-------------|----------------------------|----------------------------|----------------------|-----------------------|----------------------|
|                    | р         | q   | $p^k$ | $q^{k'}$ | dim(A)      | р                          | $p^{u}$                    | q                    | $(p^u)^{c_A}$         | $q^{v}$              |
| 80                 | 298       | 298 | 1192  | 1788     | 1<br>2      | 160<br>160                 | 640<br>320                 | 640<br>640           | 1920<br>1920          | 1280<br>1280         |
| 112                | 753       | 753 | 3012  | 4517     | 1<br>2      | 224<br>377                 | 1792<br>754                | 1792<br>1508         | 5376<br>4512          | 3584<br>3012         |
| 128                | 992       | 992 | 3966  | 5948     | 1<br>2<br>4 | 2048<br>1024<br><b>512</b> | 2048<br>1024<br><b>512</b> | 2048<br>2048<br>2048 | 6144<br>6144<br>12288 | 4096<br>4096<br>4096 |

## condition:

For finding such relaxed 2-cycles, Costello and Korpal study the following necessary

## For finding such *relaxed* 2-cycles, Costello and Korpal study the following necessary condition:

**Definition: Primes with** (k, k')**-order reciprocity** 

The prime numbers p and q have (k, k')-order reciprocity if

- $\operatorname{ord}_q(p) = k$
- $\operatorname{ord}_p(q) = k'$



## For finding such *relaxed* 2-cycles, Costello and Korpal study the following necessary condition:

**Definition: Primes with** (k, k')**-order reciprocity** 

The prime numbers p and q have (k, k')-order reciprocity if

- $\operatorname{ord}_q(p) = k$
- $\operatorname{ord}_p(q) = k'$

(k, k') will correspond to the embedding degrees.


### **Example:**

• The prime pair (p,q) = (620461, 15493) is such that (k, k') = (12, 12)



### **Example:**

- The prime pair (p, q) = (620461, 15493) is such that (k, k') = (12, 12)
- We cannot have  $q = \#E(\mathbb{F}_p)$  and  $p = \#E'(\mathbb{F}_q)$ . Indeed, the Hasse bound for  $E'/\mathbb{F}_q$  is  $15246 \le \#E'(\mathbb{F}_q) \le 15742$ .



### **Example:**

- The prime pair (p, q) = (620461, 15493) is such that (k, k') = (12, 12)
- We cannot have  $q = \#E(\mathbb{F}_p)$  and  $p = \#E'(\mathbb{F}_q)$ . Indeed, the Hasse bound for  $E'/\mathbb{F}_q$  is  $15246 \le \#E'(\mathbb{F}_q) \le 15742$ . Allowing cofactors and/or extension fields? Still doesn't quite work:
- - $hq = \#E(\mathbb{F}_p)$  and  $h'p = \#E'(\mathbb{F}_{q^2})$
  - Such an *E* exists with h = 40, but no multiple of *p* in the Hasse interval for  $E'/\mathbb{F}_{q^2}$



### **Example:**

- The prime pair (p, q) = (620461, 15493) is such that (k, k') = (12, 12)
- We cannot have  $q = \#E(\mathbb{F}_p)$  and  $p = \#E'(\mathbb{F}_q)$ . Indeed, the Hasse bound for  $E'/\mathbb{F}_q$  is  $15246 \le \#E'(\mathbb{F}_q) \le 15742$ .
- Allowing cofactors and/or extension fields? Still doesn't quite work:
  - $hq = \#E(\mathbb{F}_p)$  and  $h'p = \#E'(\mathbb{F}_{q^2})$
  - Such an *E* exists with h = 40, but no multiple of *p* in the Hasse interval for  $E'/\mathbb{F}_{q^2}$ •
- We need higher dimensions:

  - $E/\mathbb{F}_p: y^2 = x^3 + 30984x + 426966$  ordinary,  $\#E(\mathbb{F}_p) = 40 \cdot q$

•  $C/\mathbb{F}_a: y^2 = x^6 + 6611x^5 + 13858x^4 + 6818x^3 + 5652x^2 + 10423x + 1795$  ordinary,  $\#J_C(\mathbb{F}_a) = 383 \cdot p$ 



In light of this, they pose some open questions:

### In light of this, they pose some open questions:

### 1. Is (620461,15493) the only prime pair with (12,12)-order reciprocity?



In light of this, they pose some open questions:

- 1. Is (620461, 15493) the only prime pair with (12, 12)-order reciprocity?
- 2. Are there any fixed values of (k, k') with min(k, k') > 4 for which that are an infinite number of primes with (k, k')-order reciprocity?



In light of this, they pose some open questions:

- 1. Is (620461, 15493) the only prime pair with (12, 12)-order reciprocity?
- 2. Are there any fixed values of (k, k') with min(k, k') > 4 for which that are an infinite number of primes with (k, k')-order reciprocity?
- 3. Are there any fixed values of (k, k') with min(k, k') > 2 for which that are no primes with (k, k')-order reciprocity?



# Conclusions

- We generalise the definition of cycles of pairing-friendly elliptic curves.
- We make certain choices to restrict our attention to a subset of possible cycles.
- We exhibit the interest of this framework by presenting new constructions.

# Conclusions

- We generalise the definition of cycles of pairing-friendly elliptic curves.
- We make certain choices to restrict our attention to a subset of possible cycles.
- We exhibit the interest of this framework by presenting new constructions.

- Can we relax some of these restrictions to find better cycles?
- How do these cycles perform in practice?

# Conclusions

- We generalise the definition of cycles of pairing-friendly elliptic curves.
- We make certain choices to restrict our attention to a subset of possible cycles.
- We exhibit the interest of this framework by presenting new constructions.
- Can we relax some of these restrictions to find better cycles?
- How do these cycles perform in practice?



### Published at CRYPTO 2024 (eprint 2024/869)