Cheritying Linux: A Practical
View on Using CHERI

Kui Wang', Dmitry Kasatkin', Vincent Ahlrichs?, Lukas Auer?,

Konrad Hohentanner?, Julian Horsch?, Jan-Erik Ekberg’

'Huawei Technologies, Helsinki, Finland
2Fraunhofer AISEC, Garching near Munich, Germany

C Language, Memory Safety, and CHERI

 Cisalow-level language, is absent of bound-checking when
accessing memory

Memory Tag mem

* Pointer exploitation lead memory safety issues

* Capability Hardware Enhanced RISC Instructions (CHERI)
introduces hardware capability to enforce memory safety
(spatial) on C program bounds

* A pointeris represented as a 128 bits capability, which contains Capablllty 64-bit address

64 bits address and metadata

* Bounds are packed together with address, bound-checking is char *str = “foo”
enforced by architecture

int 1 = 42

* A capability can only be manipulated with CHERI instructions,
added to the base instruction set, as an extension to ISA

* Overwrite the capability, e.g., arithmetically manipulate its
address clears the out-of-band tag bit, invalid the capability

* CHERI - constrain pointer, extend ISA, update compiler, OS and C
Runtime change, C programs change. PAC, MTE comparison

Practical perspective to use CHERI

C programs need to be recompiled for CHERI ABI, requires compiler support, e.g., LLVM

CHERI ABI in turn needs CHERI extended ISA, requires hardware support, e.g., MIPS, RISCV, ARM
(Morello)

Recompile a C program completely for CHERI, i.e., using pure capability ABI, all pointers use 128
bits representation, including PC, SP

Recompile a C program using the base ABI, add a new type to support 128 bits pointer
representation, e.qg., int* p __capability

Recompile Linux kernel, C library, Busybox with RISC-V pure capability ABI to build a working
system that starts to a shell, i.e., Cherifying Linux’

Our contributions:

Summary identified issues and provide suggested patterns of changes
Evaluate the memory safety properties and performance
Thttps://github.com/cheri-linux

System Architecture

* RISC-V as hardware platform due to its mature """"""""""""" Aoplioations T
CHERI support [OpenSSH] [BusyBox]
* The RISC-V + CHERI hardware can be either E;-'-'-'-'-'-'-'-'-'-'-'-'-‘-'-'-'-'-'-'-'-'-'-‘-'-'-'-‘-'-'-':,-n- ... '
emulated by QEMU or be FPGA-based | glibc user space .1 musluserspace

[dbus][systemd] [BusyBox (init)]

* A minimal viable software stack consisting of the

Linux kernel, Musl C library and Busybox to [glibe J it mus|]
realize a basic shell environment
Linux Kernel (pure/hybrid capability)
* Aslight complex stack to replace Musl C library Serial Network File System

with GNU C library, also added dbus and systemd

e Linux kernel can be Compiled (RISC-V (RV64l) + CHERI (Flute Core/QEMU) J

e either in CHERI hybrid mode, where the kernel
supports applications with capability protection

e or in CHERI pure-capability mode where also
kernel memory accesses are protected.

Issue 1: Interchangeable use integer and
pointer cause pointer missing metadata

e Cprogram use pointer and integer interchangeable, rather common, not an issue for RISCV64

* For purecap CHERI-RISCV64, casting causes missing pointer provenance. Running the program
causes an runtime exception when dereference the pointer

* The necessary change is to use uintptr_t, which can hold a capability, not drop its provenance

[s/ ext4 / mballoc.c

static inline void *mb_correct _addr and bit({int *bit, wvoid *addr)

1
447 #it BITS_PER_LONG ==

.
[a]= e = |

*bit += ((unsigned long) addr & 7UL) << 3; N e ‘bit += ((gintpt; £) Iaddr & TUL) << 35)
addr = (void *) ((unsigned long) addr & ~7UL); addr = (void *) ((gmitptr &) addr & ~7UL);
#elif BITS PER_LONG == 32
*bit += ((unsigned long) addr & 3UL) << 3;
addr = (void *) ((unsigned long) addr & ~3UL)
#else
#error "how many bits you are?!”
#endif

return addr:

v5.15.153
v5.15.152

ssue 1: How does compiler handle
nteger <-> Pointer casts?

Csource #1 & X

A~ HSave/load + Add new..™ WV Vim

[* Type your code here, or load an example. */
vold* cast{voeld* num) {
unsigned long unsafe = (unsigned long) num;
unsate += 1 ;
return (void*) unsafe;

L= T o I R W R R

1

RISCVE4 (without CHERI) (Editor #1) # X

© -0

A~ 9 Output.~ WFilter..™ B Lbraries J/ Overrides <+

1 cast: # @cast
2 addi ag, aé, 1
3 ret

RISCV64 (without CHERI) * (@

Purecap CHERI-RISCVG4 (Editor #1) # X

Purecap CHERI-RISCV64 ¥ [@ -0O1

A~ R Output.~ YFilter..™ B Lbraries J Overrides

1 cast: # @c
2 cgetaddr ad, caeé

3 addi ag, ag, 1

L1 cincoffset ca@, cnull, ae@

5 cret

<source>:5:12: warning: cast from provenance-free integer type to pointer type will give pointer that cam not be dereferenced [-kWcheri-capability-misuse]

return (void*) unsafe;

.Y

/* Type your code here, or load an example. */
#include <stdint.h>

uintptr_t safe = (uintptr_t) num;
safe += 1;

1
2
3
4 vold* safecast(void* num) {
5
6
7 return (void*) safe;

=]

¥

RISCVE4 (without CHERI) (Editor #1) # X

RISCV64 (without CHER) ¥ (2 @ -O1

A~ % Output.™ Filter..™ B Libraries J Overrides =+ Addn

1 safecast: # @safecast
2 addi ag, ag, 1
3 ret

Purecap CHERI-RISCVE4 (Editor #1) & X

Purecap CHERI-RISCV64 ¥ (2 @ -O1

A L Output.~ YFilter.. & Libraries J Overrides Add r

1 safecast: f @rafecast
2 cincoffset cad, cad, 1
3 cret

Issue 1: Create a capability from an integer?

Csource #1 # » Special CHERI register ddc (default data
A~ BSave/load +Addnew.~ ¥ Vim capability) used to give provenance to

1 void* integertocap(int n) { :
2 void* base = builtin cheri global data get(); Integer address
3 t builtin_cheri_add t(base, n); . crre
P * For legacy C code that is difficult to
establish provenance
FPurecap CHERI-RISCVE4 (Editor #1) & X ° During early bOOt Set ddC tO CnU”

Purecap CHERI-RISCV64 ~ [4 @ -O1

A~ % Output.~ Filter..™ B Libraries # Overri

1 integertocap:

2 cspecialr cal, ddc

3 csetaddr cad, cal, a@

4 cret

- a6a 4+ #if o
465 + /* FIXCHERI
466 + * adjust permissions, boundaries
467 & * burn ddc
468 4 *f
469 4 cmove cte, cnull
470 4 cspecialw ddc, cte
471 4+ #endif

Issue 1: Walkaround by creating a capability

 Numerous cases where capabilities
need to be constructed using ddc, to

e f mm / vmalloc.c

2369 static inline void setup_wvmalloc_wm locked(struct vm_struct *wm,
. struct vmap_area *wva, unsigned long flags, const void *caller) accommodate |egacy Code
vm->flags = flags; .
vm->addr = (void *)wva->va_start; ¢ We use Comp||er Macros tO Walkaround
vm->size = va-»va_end - va->va_start; .
vm->caller = caller:; these Issues
va->vm = vm;

vim—>addr = (void *)cheri_long_data (va->va_start);

= J include / linux / vmalloch

...... 73 struct vmap_area {
unsigned long wa_start;
unsigned long va_end;

struct rb_node rb_node; /* address sorted rbtree *®
struct list head list; /¥ address sorted List */

T

Issue 1: Propagate fix

to multiple files

= / drivers / char / random.c
static long random_ioctl(struct file *+, unsigned int cmd, unsigned long arg) —aA f—'l-'-r-ll-l-'-. long random_ioctl{struct file f, unsigned int cmd,
{ uintptr_t arqg)
int _ user *p = (int __user *)arg;
int ent_count;
switch (cmd) {
case RNDGETENTCNT:
'* Inherently racy, no point Locking. */
if (put_user(input_pool.init_bits, p))
return -EFAULT: struct file operations {
return 8; .
case RNDADDTOENTCNT : long (#*unlocked_ioctl) (struct file », unsigned int,
if (!capable(CAP_SYS_ADMIN)) 1intptr t);
return -EPERM;
if (get_user(ent_count, p)) Vi
return -EFAULT;
= [drivers / char / random.c

[include

const struct file operations random_fops = {
.read_iter = random_read_iter,
.write_iter = random write iter,
.poll = random_poll,
.unlocked ioctl = random_ioctl,
.compat_ioctl = compat_ptr_ioctl,
.fasync = random_fasync,
.1llseek = noop_llseek,
.splice _read = generic_file splice read,
.splice write = iter file splice write,

1289

struct file operations {

[linux / Fs.h

struct module *owner;

loff_t (*1llseek) (struct file *, loff_t, int);
ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
ssize_t (*write) (struct file *, const char _ _user *, size t, loff_t *);
ssize_t (*read_iter) (struct kiocb *, struct iov_iter *);
ssize t (*write_iter) (struct kiocb *, struct iov_iter *);
int (*iopoll)(struct kiocb *kiocb, boeol spin);

int (*iterate) (struct file *, struct dir_context *);

int (*iterate_shared) (struct file *, struct dir_context *);
_ poll_t (*poll) (struct file *, struct poll_table struct *);
long (*unlocked_ioctl) (struct file *, unsigned int, unsigned

long);

* random_ioctl uses arg as a pointer to read data from user or write data to user

* Function prototype is changed to use uintptr t

* Due to the change on definition of struct file_operations, many other files are changed as well

Issue 2: Move a capability not as a whole
clears its tag

 If a function deals with moving data, alignment to capability size must be considered
* When a capability is moved not as a whole, its tag bit is cleared, rendering it invalid

* The fix is to move any heading and trailing data in smaller granularity', leaving the middle region
as 16-byte aligned, and move data in 16-byte granularity?

1: 2

clbu tZ, (cal) clc ct2, (cal)

csb td, (cal) csc ct2, (cal)

cincoffset cal, cal, 1 cincoffset cal, cal, CHERICAP SIZE
cincoffset cal, cal, 1 cincoffset cal, cal, CHERICAP SIZE

bltu al, t0, 1b bltu al, tl1, Zb

ssue 3: Functions intentionally overreading (for
nerformance optimization) fail bound-checking

* Function can intentionally read or write beyond boundaries of a pointer, often for optimizing
performance to reduce memory access

 String manipulation function checks the ending ‘\0’ by reading a bigger chunk each time and scan
the “\0’ char, which fails bound-checking

* The fix is to disable the optimization and retreat to reading / writing one byte at a time

1 »= sizeof igned
signed lon . data;

read_word_at_a_time(src+res);

(has_zero(c, &data, &constants)) { \A H
data = prep_zero_mask(c, data, &constants); read_byte_at_tlme
data = create_zero k{data);

(unsigned long *)(dest+res) & _byt k(dat
~eturn res + find_ data);
gned) (dest+re
igned long);
t f(unsigned long);
foned 1

v5.15.153
v5.15.152

Cherification issue types

* Missing Pointer Provenance (MPP)
 Raw Copy (RCP)
* Intentional Overflow (IOF)

* Assembler Instructions (ASE)

* e.g. in assembly file and inline assembly Id/st
instruction change to clc/csc

e Heap Allocator (HAC)
* Set bounds for dynamically allocated memory

* Global Data (GD)

* Initialize correct bounds for data pointers and code
pointers in capability table, replace GOT

* Pointer Size Assumption (PSZ)
* Pointer size should not be hardcoded in source file

Project MPP RCP IOF ASE HAC GD PSZ LoC
Linux Kernel 515 v v v Vv v V5942
MUSL libe 1.2.0 v - v v 2030
glibc 2.27 v o v v v v v v 2268
Busybox - - - - - - -2

OpenSSH - v 6

OpenSSL v - - 24
systemd - v - v 52
dbus - v v 29

Start a user program in CHERI Linux

* Linux kernel prepares arguments and
environment variables as capabilities on stack for
interpreter, i.e., dynamic linker and pass control
to it

* Capabilities are initialized, e.g., function pointers
for procedure calls

* Dynamic memory allocation such as malloc need
to return bounded capability

51. (Fork and)
execve()

) User space
systemd
3. Load shared libs,
libc Initialize caps

and run init functions

ELF

nterp: Id-

¥ i
Linux syscall interface vl

(DSO-local, external) '

linux.so /

.........

-
New process i

—_ | | Parsof glibc
> libc

|\ 6. malioc returns
5. malloc() | |: bounded cap
/|| for new allocation

AW
' _|.p| Program 4&“’;;
: “""'5 4. Start
1 |} execution
—* ld-inuxso — 77
L S

! { Initialize caps/regs (mappings, args, env)
Pass control to ld-linux.so

Linux kernel (full/hybrid capability)

Memory safety evaluation

Juliet Test Suite for security evaluation

According to types of flaws, test cases are
categorized to Common Weakness Enumerations
(CWEs)

Each test case exhibits a flaw, Normal exit means
flaw is not detected

CHERI can detect more spatial violation, i.e.,
successfully exposes the flaws by triggering
runtime CHERI exceptions, reducing the Normal
exit counts, reporting CHERI violations instead of
Segfaults

CHERI do not improve protections against other
weakness, e.g., temporal violations

Category (CWEs)

Exit Status

Plain

CHERI

Spatial Violations

(121, 122, 124, 126, 127)

Normal
Segtaults
CHERI Violations

111
41

146

Temporal Violations
k401, 415, 416, 562, 590)

Normal

Segtaults

Aborts

CHERI Violations

29

19

29

11

Others (...)

Normal

Timeouts

Explicit Error
Allocation Error
Segtaults

Aborts

CHERI Violations

279

276

Summary

Normal
Segtaults
Aborts

419
63
23

311
11
15

Performance evaluation

e CoreMark, Dhrystone, and MiBench for performance evaluation

* Evaluation were conducted on the Flute CPU, a 5-stage in-order RISC-V core, extended with CHERI,
synthesized to run at 94MHz on a Xilinx Virtex UltraScale+ FPGA

* Compare to a non-CHERI system, CoreMark has a 3.7% overhead, Dhrystone 14.4%, MiBench 16.4%
* Overhead of individual MiBench varies from 1.7% to 49.1%
* Remove optimization in glibc to comply with CHERI potentially impacted some benchmark results

* Due to increased size of pointer, cache pressure increases, may negatively affect the performance

- 49.1
> 38.1
= 40 - :
o - 31.6 347 318
v
£ 0 22.8
%; 14.4 14.4 11.3 - 10.7 12.6
S 3.7 2.7 6.3 42 59 39 39 ;5 37
D I | | | | | | | | | | I I | | | | | | | | |
\ﬁ:’u‘r ORI SR P A= S . A X SN e CR e A S Y A S g Qﬁﬁ* & o
o oo¥7_8° & s 2 AR @ & Q“é‘é{\ \é‘\";\ o o ﬂ‘fp S <«
S :
© o o P I S R

Conclusion

C does not have built-in bound-checking, causing memory safety issue

e CHERI introduces hardware capabilities to enforce bound-checking on C programs

e Recompile Linux to CHERI purecap ABI, on CHERI extended RISC-V ISA

* Setup a cherified system' including Linux kernel, C library, busybox to realize a shell environment
* Categorized issues during cherifying Linux, analysis, and provided patterns of changes

* CHERI improves memory spatial safety

* The incurred performance overhead is about 15% (on our setup, not generalizable)

Thttps://github.com/cheri-linux

