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Introduction

Context:

• Main goal: Efficient and secure modular arithmetic

• PMNS: Polynomial Modular Number System

• Main characteristic: Elements are polynomials in the PMNS

• Additional characteristic: PMNS is a redundant system

Goals:

• Improve and extend PMNS generation

• Study and control the redundancy in the PMNS

• Perform equality test within the system

Presentation based on: https://eprint.iacr.org/2023/1231
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PMNS: Polynomial Modular Number System

Let p ⩾ 3, be an odd integer. We want to represent elements of Z/pZ.

A PMNS is a subset of Z[X ], defined by a tuple B = (p, n, γ, ρ,E ).

• n: elements are represented with n coefficients.

• γ: a polynomial T ∈ B represents the integer t = T (γ) (mod p)

• ρ: ∥T∥∞ < ρ, ∀T ∈ B

• E : a monic polynomial ∈ Zn[X ], such that E (γ) ≡ 0 (mod p).

where 0 < γ < p and ρ ≈ n
√
p.
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Example: B = (p, n, γ, ρ, E ) = (19, 3, 7, 2, X 3 − 1)

0 1 2 3 4

0 1 −X 2 − X + 1 X 2 − X − 1 X 2 − X

5 6 7 8 9

X 2 − X + 1 X − 1 X X + 1 −X 2 + 1

10 11 12 13 14

X 2 − 1 X 2 X 2 + 1 −X + 1 −X 2 + X − 1

15 16 17 18

−X 2 + X −X 2 + X + 1 X 2 + X − 1 −1

(X 2 − 1) ≡ 10B, since 72 − 1 = 48 ≡ 10 (mod 19).

A redundant system: (−X − 1) ≡ 11B.

(X 2 + X + 1) ≡ 0B.
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Main operations and reductions

Let A,B ∈ B. There are two main operations:

• Addition: S = A+ B

• Multiplication: C = A× B

We have:

• deg(S) < n, but ∥S∥∞ < 2ρ

• deg(C ) < 2n − 1, and ∥C∥∞ < nρ2

So, we need to:

• reduce deg(C ) ⇒ External reduction

• reduce ∥C∥∞ and ∥S∥∞ ⇒ Internal reduction
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The external reduction

It is the computation:

R = C mod E

Result:

• R ∈ Zn−1[X ]

• E (γ) ≡ 0 (mod p) ⇒ R(γ) ≡ C (γ) (mod p)

Essential:

E is chosen so that the reduction modulo it is very efficient.

For example: X n ± 2, X n ± X ± 1, ...

7 / 54



Multiplication example for B = (19, 3, 7, 2, X 3 − 1)

Remember that: p = 19, n = 3, γ = 7, ρ = 2, E (X ) = X 3 − 1.

• Let a = 8; A ≡ aB, with A(X ) = X + 1

• Let b = 12; B ≡ bB, with B(X ) = X 2 + 1

• C = AB = X 3 + X 2 + X + 1

• C (7) mod 19 = 1 = ab (mod 19) = 1, but C /∈ B

• R = C mod E = X 2 + X + 2

• R(7) mod 19 = 1 and deg(R) < 3, but R /∈ B.

Internal reduction:

• Let T (X ) = X 2 + X + 1.
T (7) ≡ 0 (mod 19) and S = R − T = 1 ∈ B

• How to find such a polynomial T?
⇒ the internal reduction process
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The internal reduction

Let R ∈ Zn−1[X ], with possibly ∥R∥∞ ⩾ ρ.

The Goal:

find S ∈ Zn−1[X ], such that: ∥S∥∞ < ρ and S(γ) ≡ R(γ) (mod p)

Equivalent to compute:

T ∈ Zn−1[X ], such that: T (γ) ≡ 0 (mod p) and ∥S∥∞ = ∥R − T∥∞ < ρ

Many methods to do this reduction:

• Montgomery-like method

• Barrett-like method

• Babäı-based approaches

• ‘Direct’ approaches
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Internal reduction: the Montgomery-like approach

By Christophe Negre and Thomas Plantard (2008).

Introduces an integer ϕ and two polynomials M,M ′ ∈ Zn−1[X ], such that:

• ϕ ⩾ 2

• M(γ) ≡ 0 (mod p)

• M ′ = −M−1 mod (E , ϕ)

Mont-like:

1: Input : R ∈ Zn−1[X ]

2: Output : S ∈ Zn−1[X ], with S(γ) ≡ R(γ)ϕ−1 (mod p)

3: Q ← R ×M ′mod (E , ϕ)

4: T ← Q ×M modE

5: S ← (R + T )/ϕ # exact divisions

6: return S
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Generation of M : a lattice of zeros

To a PMNS B, one associates the following lattice:

LB = {A ∈ Zn−1[X ] | A(γ) ≡ 0 (mod p)}

• LB is a n-dimensional full-rank Euclidean lattice;

• a basis of LB is:

B =



p 0 0 . . . 0 0
t1 1 0 . . . 0 0
t2 0 1 . . . 0 0
...

. . .
...

tn−2 0 0 . . . 1 0
tn−1 0 0 . . . 0 1



← p
← X + t1
← X 2 + t2

← X n−2 + tn−2

← X n−1 + tn−1

where ti = (−γ)i mod p.

Note: each line i of B represents the polynomial X i + ti .
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Generation of M : a lattice of zeros

• Let W be a reduced basis of LB;

• i.e. W = LLL(B) = BKZ (B) = HKZ (B), ...

Let’s assume that ϕ is a power of two (best choice for efficiency).

Fundamental result: (Didier, Dosso, Véron, JCEN-2020)

There always exists (α0, . . . , αn−1) ∈ {0, 1}n, such that:

M =
∑n−1

i=0 αiWi and M ′ = −M−1 mod (E , ϕ) exists.

Note:

• we need Resultant(E ,M) to be odd for M ′ to exist.

• we take ρ ≈ ∥M∥∞, hence a reduced basis W.

So, to find a suitable polynomial M, a search is done in a space of size 2n.
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Simplified example of PMNS generation

Let p be a 192-bits prime, such that:

p = 4519769796091041823898087646286620970503624228268900016911

Steps in order:

1. We choose ϕ = 264, which leads to: n = 4.

2. We choose E (X ) = X 4 − 2, which leads to:

γ = 2110166219506859592569288331390507089403470310341596434834

3. With the basis B and W = LLL(B), we obtain a suitable M, i.e. with
Resultant(E ,M) odd, such that:
M(X ) = −158498747706969 + 167054566018957X − 98192163350595X 2 −
34173855083107X 3.

The remaining parameters are easy to compute.
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A summary: the good news

• High parallelization capability (no carry propagation nor conditional
branching)

• It is always possible to generate efficient PMNS given any prime:
Efficient modular operations using the adapted modular number
system (JCEN-2020)

• PMNS has been proven competitive for both hardware and software
implementations:

• PMNS for Efficient Arithmetic and Small Memory Cost
(TETC-2022)

• Modular Multiplication in the AMNS representation: Hardware
Implementation (SAC-2024)

• PMNS is redundant: it allows easy and efficient randomisation. See:
Randomization of Arithmetic over Polynomial Modular Number
System (ARITH-26/2019).
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A summary: the bad news

When n becomes big:

• The generation of the parameter M could be very long;
the search is done in a space of size 2n.

• It could have a significant impact on the infinite norm of M.
Thus, increasing memory requirement to represent elements, since
ρ ≈ ∥M∥∞.

PMNS is redundant:

• More memory is needed to represent elements (compared to a
non-redundant system).

• Trivial equality test is not possible.
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Our goals in the remaining:

• Simplify and generalise the parameter generation process.

• Define and control redundancy in the PMNS.

• Make equality test possible within the PMNS
(even when the system is chosen very redundant).

16 / 54



1 PMNS and its arithmetic

2 GMont-like: a generalised Montgomery-like method

3 Redundancy in the PMNS

4 Equality test in the PMNS

5 Bonus: behavior of lattice points

17 / 54



Rewriting the Montgomery-like approach

From PMNS for Efficient Arithmetic and Small Memory Cost

(Dosso, Robert, Véron, TETC-2022).

LetM be the n × n matrix such that:

M =


m0 m1 . . . mn−1

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . .


← M
← X .M mod E

← X n−1.M mod E

LetM′ be the n × n matrix such that:

M′ =


m′

0 m′
1 . . . m′

n−1

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . .


← M ′

← X .M ′ mod (E , ϕ)

← X n−1.M ′ mod (E , ϕ)

18 / 54

https://hal.science/hal-03768546/document


Rewriting the Montgomery-like approach

Mont-like:

1: Input : R ∈ Zn−1[X ]

2: Output : S ∈ Zn−1[X ], such that S(γ) ≡ R(γ)ϕ−1 (mod p)

3: Q ← (r0, . . . , rn−1)M′ (mod ϕ)

4: T ← (q0, . . . , qn−1)M
5: S ← (R + T )/ϕ

6: return S

Remember that: LB = {A ∈ Zn−1[X ] | A(γ) ≡ 0 (mod p)}

• M is a basis of a sub-lattice L(M) of LB
• L(M) = {AM mod E | A ∈ Zn−1[X ]}
• T ∈ L(M) (see line 4 in Mont-like)

Question: Is it possible to use another sub-lattice of LB ?
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Sub-lattice L of zeros

Let’s assume that p is an odd prime.

B =



p 0 0 . . . 0 0
t1 1 0 . . . 0 0
t2 0 1 . . . 0 0
...

. . .
...

tn−2 0 0 . . . 1 0
tn−1 0 0 . . . 0 1


• B is a basis of LB
• det(B) = p

Let L be a sub-lattice of LB.

If a matrix G is a basis of L, then:
• det(G) = kp, with k ∈ Z \ {0},
• L = LB ⇐⇒ det(G) = ±p
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Sub-lattice L of zeros: some fundamental regions

Let G be a basis of L.

Let H be the fundamental domain of L:

H = {t ∈ Rn | t =
n−1∑
i=0

µiGi and 0 ⩽ µi < 1}

And H′ be the fundamental region:

H′ = {t ∈ Rn | t =
n−1∑
i=0

µiGi and − 1

2
⩽ µi <

1

2
}

Remarks:

• If V ∈ H, then ∥V ∥∞ < ∥G∥1.

• If V ∈ H′, then ∥V ∥∞ ⩽ 1
2∥G∥1.
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A representation of H and H′, for n = 2

G0

G1

Figure: H

G0

G1

Figure: H′
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Some fundamental properties

Let d = | det(G)| = |kp|.

Let us assume that:

gcd(d , ϕ) = 1

Then:

• G′ = −G−1 (mod ϕ) exists.

• Let C ∈ Zn−1[X ], such that: C = αG.
For each αi , there exists ki ∈ Z, such that:

αi =
ki
d

So, (αi mod ϕ) exists.
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GMont-like: Generalised Montgomery-like method

GMont-like:

1: Input : C ∈ Zn−1[X ]

2: Output : S ∈ Zn−1[X ], such that S(γ) ≡ C (γ)ϕ−1 (mod p)

3: Q ← (c0, . . . , cn−1)G′ (mod ϕ)

4: T ← (q0, . . . , qn−1)G
5: S ← (C + T )/ϕ

6: return S

Essential: Output coordinates with respect to the basis G
If C = αG, then:

S =
α+ (−α mod ϕ)

ϕ
G

*(−α mod ϕ) = ((−α0) mod ϕ, (−α1) mod ϕ, . . . , (−αn−1) mod ϕ)
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GMont-like: Generalised Montgomery-like method

To sum up:

• Any basis G of any sub-lattice of LB, provided that
gcd(det(G), ϕ) = 1, can be used for internal reduction.

• In particular, any (reduced) basis of LB can be used.

• So, no need to search a polynomial M.

• Thus, leading to a faster, simpler and generalised parameters
generation process.
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Redundancy in the PMNS

Limitations:

• It is not precisely defined.

• We can only choose the minimum number of distinct representations
for Z/pZ elements in the PMNS.
See: Randomization of Arithmetic over PMNS (ARITH-26).

Motivations:

Precisely control the redundancy for:

• smaller memory requirement to represent element,

• a more reliable randomisation.

A new tool: the set Dj
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Dj : the Domain j

Let j ⩾ 1 be an integer.

We define the set Dj as:

Dj = {t ∈ Rn | t =
n−1∑
i=0

µiGi and − j ⩽ µi < j}

This can be seen as an extension of the fundamental region H′.

Remark

If A ∈ Dj , then: ∥A∥∞ ⩽ j∥G∥1.
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A representation of D2, for n = 2

G0

G1
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Domain D1 vs D2, for n = 2

G0

G1
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A representation of H′, D1, D2 and D3, for n = 2

G0

G1
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Redundancy in the PMNS

Fundamental result:

The set Dj contains exactly (2j)n times the set H.

Property:

If L = LB, then each a ∈ Z/pZ has exactly one representation in H.

Open question: what if L ≠ LB?

Consequence:

If L = LB, then:

each a ∈ Z/pZ has exactly (2j)n representation in Dj .
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Redundancy in the PMNS

Let a ∈ Z/pZ.

The set of representations

Let’s define the set Rj(a) as:

Rj(a) = {A ∈ Dj ∩ Zn | a = A(γ) (mod p)}

Property:

If L = LB, then:
#Rj(a) = (2j)n

In particular, #R1(a) = 2n.

Easy to compute: the representations of zeros in Dj

It corresponds to the lattice points in Dj .

Rj(0) = {(α0, . . . , αn−1)G, with αi ∈ Z ∩ [−j , j [ } .
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Redundancy in the PMNS

Property:

Let us assume that L = LB.
Let a ∈ Z/pZ. If A is its unique representation in H, then:

Rj(a) = {A+ J | J ∈ Rj(0)} .

Questions:

• How to compute a representation in H?
• How to make PMNS elements live in a set Dj?

Let us first focus on D1.
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An interesting comparison: D1 vs H

Comparison 1:

If L = LB, then:
• each a ∈ Z/pZ has exactly one representation in H.
• each a ∈ Z/pZ has exactly 2n representation in D1.

Comparison 2:

• If A ∈ H, then ∥A∥∞ < ∥G∥1.
• If A ∈ D1, then ∥A∥∞ ⩽ ∥G∥1.

So, same memory requirement to represent their elements.
But, different redundancies.
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Internal reduction to D1

Let A ∈ Zn−1[X ], with A = (α0, α1, . . . , αn−1)G.

Fundamental property:

If ∀i ∈ {0, ..., n − 1}, −ϕ ⩽ αi ⩽ 0, then:

GMont-like(A) ∈ D1.

Question:

How to make all the coordinates of an element negative?

Answer:

Using the translation vector.
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The translation vector (a simplified version)

Let A,B ∈ B and C = A× B mod E .

Property:

C = αG, with α = (α0, . . . , αn−1) ∈ Rn such that:

∥α∥∞ ⩽ w(ρ− 1)2∥G−1∥1 .

• Let u = ⌈w(ρ− 1)2∥G−1∥1⌉.

• The translation vector T is defined as follows:

T = (−u, . . . ,−u)G .

Important: note that T ∈ L.

Consequence:

• C + T = βG, with −2u ⩽ βi ⩽ 0.

• Thus, if ϕ ⩾ 2u, then GMont-like(C + T ) ∈ D1.
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• Thus, if ϕ ⩾ 2u, then GMont-like(C + T ) ∈ D1.
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The translation vector: example for ϕ = 4, with u = 2

T

G0

G1
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About the bounds

Note: For simplicity, the parameter δ for ‘free’ additions is not included. See

https://eprint.iacr.org/2023/1231 for full formulas and details.

Old bounds on ρ and ϕ:

ρ ⩾ 2∥G∥1 ,

ϕ ⩾ 2wρ .

New bounds for reduction in D1, using T :

ρ = ∥G∥1 + 1 ,

ϕ ⩾ 2u ,

with u = ⌈w∥G∥21∥G−1∥1⌉.
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Reduction to the fundamental
regions H and H′
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SMont-like: a Signed GMont-like

Let us assume that ϕ is an even integer.

SMont-like:

1: Input : C ∈ Zn−1[X ]

2: Output : S ∈ Zn−1[X ], such that S(γ) ≡ C (γ)ϕ−1 (mod p)

3: Q ← (c0, . . . , cn−1)G′ (mod ϕ)c # Q coeffs are reduced in [−ϕ
2
, ϕ
2
[

4: T ← (q0, . . . , qn−1)G
5: S ← (C + T )/ϕ

6: return S
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Reduction to H and H′

Let A ∈ Zn−1[X ] be a polynomial.

Property 1

If A ∈ D1, then:
GMont-liken(A) ∈ H .

Property 2

If A ∈ H, then SMont-like(A) ∈ H′.

Consequence

If A ∈ D1, then:

SMont-like(GMont-liken(A)) ∈ H′ .

Note that H′ and H have the same redundancy, while H′ requires less memory to

represent its elements.
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Example: Let p = 291791, a 19-bit prime integer

Let B = (p, n, γ, ρ,E ) = (p, 2, 11810, 841, X 2 − 2) be a PMNS, with:

G =

(
247 420
−593 173

)
.

We have det(G) = p, so L = LB.
R1(0) = {−593X + 346,−173X + 593,−420X − 247, 0}

The unique representation of a = 122706 in H is A(X ) = 381X − 39,
with:

(−39, 381) = (
219186

291791
,
110487

291791
)G .

So, R1(a) = {−212X + 307, 208X + 554, −39X − 286, 381X − 39}.

Its unique representation in H′ is −39X − 286, with:

(−286,−39) = (
−72605
291791

,
110487

291791
)G .

43 / 54



1 PMNS and its arithmetic

2 GMont-like: a generalised Montgomery-like method

3 Redundancy in the PMNS

4 Equality test in the PMNS

5 Bonus: behavior of lattice points

44 / 54



Equality test in the PMNS

Let A,B ∈ B.

Goal:

Check if A(γ) ≡ B(γ) (mod p), without conversion out of the PMNS.

Fundamental property:

Let A ∈ L, such that: A = αG. So α ∈ Zn.

If ∀i ∈ {0, ..., n − 1}, −ϕ < αi ⩽ 0, then:

GMont-like(A) = 0
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Equality test in the PMNS

We assume that ϕ ⩾ 2u ⩾ 4, with u = ⌈w(ρ− 1)2∥G−1∥1⌉.

A fact:

If A,B ∈ B, then: A− B = νG, with ∥ν∥∞ ⩽ 2 < ϕ.

So, the previous property applies.

The check:

A ≡ B ⇐⇒ GMont-like((A− B) + T ) = 0

Remark:

• Works regardless of PMNS redundancy.

• Does not require that L = LB.
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Implementations

Codes to generate PMNS, study its redundancy, perform equality test
(with examples) and much more are available at:

https://github.com/arithPMNS/PMNS-and-redundancy

The associated GitHub account also contains repositories that provide C code generators

from PMNS parameters.
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GMont-like and lattice points

Let A ∈ L, such that: A = αG. So, α ∈ Zn.

If S = GMont-like(C ), then S = βG, with:

βi = ⌈
αi

ϕ
⌉

Invariant for GMont-like

A = GMont-like(A) ⇐⇒ αi ∈ {0, 1},∀i ∈ {0, ..., n − 1}

Def: Canonical representations set

Let’s define the canonical representation set O of L as:

O = {(α0, . . . , αn−1)G | αi ∈ {0, 1}}
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Canonical representations set, for n = 2

G0

G1

Figure: O = H edges’
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Canonical representation

Let A ∈ L, such that: A = αG.

Property: Canonical representation of A

There exists k ⩾ 0 an integer and Ȧ ∈ O, such that:

Ȧ = GMont-likek(A)

Definition:

Ȧ is called the canonical representation of A.
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Computation of the canonical representation

Let A ∈ L, such that: A = αG.

Property: One step to the canonical representation

If ∀i ∈ {0, ..., n − 1}, −ϕ < αi ⩽ ϕ. Then:

Ȧ = GMont-like(A)

Property: a very simple case, when (the sign of) αi is known

Ȧ = βG,

with:

βi =

{
1 if αi > 0,
0 if not
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Ȧ = GMont-like(A)

Property: a very simple case, when (the sign of) αi is known
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Computation of the canonical representation

G0

G1

53 / 54



Conclusion

A summary

• We have highlighted some limitations of the Mont-like (based on the
polynomial M).

• We have simplified and generalised parameters generation process.

• We have provided tools and results to define and control the
redundancy in the PMNS.

• We presented a simple way to perform equality test within the PMNS
(even when the system is redundant).

Perspectives/questions

• How to express the redundancy in H when L ≠ LB?
• Friendly bases for more security and/or efficiency?
See: https://eprint.iacr.org/2025/090 (efficiency)
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Thank you for your attention.
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The external reduction matrix E

Let’s assume E (X ) = X n + en−1X
n−1 + · · ·+ e1X + e0.

E =


−e0 −e1 . . . −en−1

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . .


← X n mod E
← X n+1 mod E

← X 2n−2 mod E

R = (c0, . . . , cn−1) + (cn, . . . , c2n−2)E

Let E ′ be the (n − 1)× n matrix such that E ′ij = |Eij |. Then,

∥R∥∞ ⩽ w∥A∥∞∥B∥∞ ,

where w = ∥(1, 2, . . . , n) + (n − 1, n − 2, . . . , 1)E ′∥∞.
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Conversion operations

ConvToPMNS: conversion from Z/pZ to B
1: Inputs: a ∈ Z/pZ and Pi (X ) ≡ (βiϕ2)B, for i = 0 . . . (n − 1)

2: Ensure: A ≡ (a.ϕ)B

3: t = (an−1, ..., a0)β # radix-β decomposition of a

4: U ←
n−1∑
i=0

ti Pi

5: A← GMont-like(U)

6: return A

with β = 2k .

Conversion from B to Z/pZ
Let A ∈ Zn−1[X ]. We compute: a = A(γ)ϕ−1 (mod p).
Can be optimised using precomputation or Horner polynomial evaluation
method.
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