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Introduction

e Main goal: Efficient and secure modular arithmetic

e PMNS: Polynomial Modular Number System

e Main characteristic: Elements are polynomials in the PMNS

o Additional characteristic: PMNS is a redundant system
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Introduction

e Main goal: Efficient and secure modular arithmetic

e PMNS: Polynomial Modular Number System

e Main characteristic: Elements are polynomials in the PMNS

o Additional characteristic: PMNS is a redundant system

Improve and extend PMNS generation

Study and control the redundancy in the PMNS

Perform equality test within the system

Presentation based on: https://eprint.iacr.org/2023/1231
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@ PMNS and its arithmetic

© GMont-like: a generalised Montgomery-like method
© Redundancy in the PMNS

@ Equality test in the PMNS

© Bonus: behavior of lattice points
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PMNS: Polynomial Modular Number System

Let p > 3, be an odd integer. We want to represent elements of Z/pZ.

A PMNS is a subset of Z[X], defined by a tuple B = (p, n, v, p, E). J

e n: elements are represented with n coefficients.
e 7: a polynomial T € B represents the integer t = T () (mod p)
o 0 ||T|loo<p, VT €B

o E: a monic polynomial € Z,[X], such that E(y) =0 (mod p).

where 0 <y < pand p = /p.
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Example: B= (p, n, v, p, E) = (19, 3, 7,2, X3 —1)

0 1 2 3 4
0 1 ==X | B =X=1 X2 - X
5 6 7 8 9

X2—-X+1 X -1 X X+1 —X?+1
10 11 12 13 14

52 =1l X2 X241 —X+1 -X?+X-1
15 16 17 18

X2+ X | = XP4X4+1| XP4+X-1 =il

(X2 —1) = 10g, since 72 — 1 = 48 = 10 (mod 19).
A redundant system: (=X — 1) = 113.

(X2 + X +1)=0g.




Main operations and reductions

Let A, B € B. There are two main operations:

e Addition: S=A+B

e Multiplication: C=AXx B J
We have:

o deg(S) < n, but ||S]|c < 2p

e deg(C) <2n—1, and ||C||ls < np? J

So, we need to:

e reduce deg(C) = External reduction J

e reduce ||Cl|~ and ||S||xx = Internal reduction
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The external reduction

It is the computation:

R=C mod E J

o REZn1[X]
e E(¢)=0 (mod p) = R(3)= C(3) (mod p)

E is chosen so that the reduction modulo it is very efficient. \

For example: X" +£2, X"+ X +1, ...
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Multiplication example for B = (19, 3, 7, 2, X3 — 1)

Remember that: p=19, n=3, y=7, p=2, E(X):X3—1.
o Let a=8; A= ap, with A(X)=X+1 J

o Let b=12; B = bg, with B(X) = X? +1
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Multiplication example for B = (19, 3, 7, 2, X3 — 1)

Remember that: p=19, n=3, y=7, p=2, E(X):X3—1.

o Let a=8; A= ap, with A(X)=X+1
o Let b=12; B = bg, with B(X) = X? +1

e C=AB=X3+X?+X+1
e C(7)mod19=1=ab (mod 19) =1, but C ¢ B
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Multiplication example for B = (19, 3, 7, 2, X3 — 1)

Remember that: p=19, n=3, y=7, p=2, E(X):X3—1.

o Let a=8; A= ap, with A(X)=X+1
o Let b=12; B = bg, with B(X) = X2 +1

e C=AB=X3+X2+X+1

e C(7)mod19=1=ab (mod 19) =1, but C ¢ B
e R=Cmod E=X2+X+2

e R(7) mod 19 =1 and deg(R) < 3, but R ¢ B.
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Multiplication example for B = (19, 3, 7, 2, X3 — 1)

Remember that: p=19, n=3, v=7, p=2, E(X):X3—1.

Let a=8; A= ag, with A(X) =X +1
Let b= 12; B = bg, with B(X) = X2 +1

C=AB=X34+X>+X+1

C(7) mod 19 =1=ab (mod 19) =1, but C ¢ B
R=Cmod E=X2+X+2

R(7) mod 19 =1 and deg(R) < 3, but R ¢ B.

Internal reduction:

| N\

Let T(X) = X%+ X + 1.

T(7)=0 (mod19)and S=R-T=1€B
How to find such a polynomial 77

= the internal reduction process
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The internal reduction

Let R € Z,—1[X], with possibly ||R]|s = p-

find S € Z,_1[X], such that: ||S|lcc < p and S(7) = R(7y) (mod p)

Equivalent to compute:
T € Zp—1[X], such that: T(y) =0 (mod p) and ||S]lec = [|R — T|loo < p
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The internal reduction

Let R € Z,—1[X], with possibly ||R]|s = p-

find S € Z,_1[X], such that: ||S|lcc < p and S(7) = R(7y) (mod p)

Equivalent to compute:

T € Zp—1[X], such that: T(y) =0 (mod p) and ||S]lec = [|R — T|loo < p

Many methods to do this reduction:

o Montgomery-like method
o Barrett-like method
o Babai-based approaches

e ‘Direct’ approaches
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Internal reduction: the Montgomery-like approach

By Christophe Negre and Thomas Plantard (2008).

Introduces an integer ¢ and two polynomials M, M" € Z,_1[X], such that:
o« p>2
« M(7) =0 (mod p)
e M' = —M~1 mod (E, ¢)

v

Input : R € Z,_1[X]

Output : S € Z,_1[X], with S(7) = R(7)¢~! (mod p)
Q + R x M'mod (E, ¢)

T+ Q x Mmod E

S+ (R+T)/¢ # exact divisions

return S

@ o WY =
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Generation of M: a lattice of zeros

To a PMNS B, one associates the following lattice:
Lr={A€ Zp-1[X] | A(v) =0 (mod p)}

e Lp is a n-dimensional full-rank Euclidean lattice;

e a basis of Lp is:

p 00 ... 00\cp
t1 1 0 ... 00O — X+t

B b 01 ... 0O (—X2+t2
t o 00 ... 1 0]« X" 2+t
t 1 0 0 0 1)« X"+ th

where t; = (—y)' mod p.

Note: each line i of B represents the polynomial X' + t;.
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Generation of M: a lattice of zeros

e Let W be a reduced basis of Lz;
e iie. W=LLL(B)=BKZ(B) = HKZ(B), ... J

Let's assume that ¢ is a power of two (best choice for efficiency).

Fundamental result: (Didier, Dosso, Véron, JCEN-2020)

There always exists (o, ...,an—1) € {0,1}", such that:

M = 27:—01 aiW; and M’ = —M~1 mod (E, ¢) exists.

Note:
e we need Resultant(E, M) to be odd for M’ to exist.

e we take p & ||M||oc, hence a reduced basis W.

So, to find a suitable polynomial M, a search is done in a space of size 2".J
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Simplified example of PMNS generation

Let p be a 192-bits prime, such that:

p = 4519769796091041823898087646286620970503624228268900016911
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Simplified example of PMNS generation

Let p be a 192-bits prime, such that:

p = 4519769796091041823898087646286620970503624228268900016911

Steps in order:

We choose ¢ = 254, which leads to: n = 4.
We choose E(X) = X* — 2, which leads to:

v = 2110166219506859592569288331390507089403470310341596434834

13/54



Simplified example of PMNS generation

Let p be a 192-bits prime, such that:

p = 4519769796091041823898087646286620970503624228268900016911

Steps in order:

We choose ¢ = 254, which leads to: n = 4.
We choose E(X) = X* — 2, which leads to:

v = 2110166219506859592569288331390507089403470310341596434834

With the basis B and YW = LLL(B), we obtain a suitable M, i.e. with
Resultant(E, M) odd, such that:

M(X) = —158498747706969 + 167054566018957.X — 98192163350595X2 —
34173855083107.X°.

v

The remaining parameters are easy to compute.
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A summary: the good news

« High parallelization capability (no carry propagation nor conditional
branching)

o It is always possible to generate efficient PMNS given any prime:
Efficient modular operations using the adapted modular number
system (JCEN-2020)

e PMNS has been proven competitive for both hardware and software
implementations:
e PMNS for Efficient Arithmetic and Small Memory Cost
(TETC-2022)

e Modular Multiplication in the AMNS representation: Hardware
Implementation (SAC-2024)

e PMNS is redundant: it allows easy and efficient randomisation. See:
Randomization of Arithmetic over Polynomial Modular Number
System (ARITH-26/2019).
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A summary: the bad news

When n becomes big:

e The generation of the parameter M could be very long;
the search is done in a space of size 2".

e It could have a significant impact on the infinite norm of M.
Thus, increasing memory requirement to represent elements, since
P~ [|[M||oo.
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A summary: the bad news

When n becomes big:

e The generation of the parameter M could be very long;
the search is done in a space of size 2".

e It could have a significant impact on the infinite norm of M.
Thus, increasing memory requirement to represent elements, since
P~ [|[M||oo.

PMNS is redundant:

e More memory is needed to represent elements (compared to a
non-redundant system).

o Trivial equality test is not possible.
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Our goals in the remaining:

Simplify and generalise the parameter generation process.
Define and control redundancy in the PMNS.

Make equality test possible within the PMNS
(even when the system is chosen very redundant).
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© GMont-like: a generalised Montgomery-like method
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Rewriting the Montgomery-like approach

From PMNS for Efficient Arithmetic and Small Memory Cost
(Dosso, Robert, Véron, TETC-2022).

Let M be the n x n matrix such that:

mg mp ... Mp_1\ « M

+— X" 1 M mod E

Let M’ be the n x n matrix such that:

/ / /
Wy L eee Wl = A

M/: <_X[\/]'mod(E,¢)

« X"~1. M’ mod (E, ¢)
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Rewriting the Montgomery-like approach

S R

Input : R € Zp_1[X]

Output : S € Z, 1[X], such that S(7) = R(7)¢~! (mod p)
Q « (roy.--yra—1)M’ (mod ¢)

T < (q0,---,qn-1)M

S—(R+T)/¢

return S
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Rewriting the Montgomery-like approach

Input : R € Zp_1[X]

Output : S € Z, 1[X], such that S(7) = R(7)¢~! (mod p)
Q « (roy.--yra—1)M’ (mod ¢)

T < (q0,---,qn-1)M

S—(R+T)/¢

return S

Remember that: Lz = {A € Zp—1[X] | A(y) =0 (mod p)}

SO

e M is a basis of a sub-lattice £L(M) of L
o LM)={AM mod E | A€ Zn_1[X]}
o T € L(M) (seeline 4in Mont-like)

Question: Is it possible to use another sub-lattice of Lz ? )
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Sub-lattice £ of zeros

Let's assume that p is an odd prime.

p 00 ... 0O
t1 10 ... 00
to 01 ... 0O
B = . .
th—> 0 O 10
th-.1 0 0 01

e B is a basis of Lj

° det(B) =p
Let £ be a sub-lattice of Lp. J

If a matrix G is a basis of L, then:
o det(G) = kp, with k € Z\ {0},
o L=Lp <= det(G)==xp
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Sub-lattice L of zeros: some fundamental regions

Let G be a basis of L.

Let H be the fundamental domain of L:

n—1

H={teR"| t:Zu;gi and 0 < p; <1}
i=0

And H' be the fundamental region:

n—1
H ={teR" | tzz,u,-g,- and —
i=0

1
<Mi<§}

N =

o If V €H, then ||V||oo < ||g||1

o If Ve, then ||V]o < 3|G]1-
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A representation of H and H’', for n = 2

G1 g1

Figure: H Figure: H'
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Some fundamental properties

Let d = | det(G)| = |kp|.

Let us assume that:

ged(d,9) =1

e G'=—G! (mod ¢) exists.

o Let C € Z,—1[X], such that: C = aG.
For each «;, there exists k; € Z, such that:

ap = —

d

So, (aj mod ¢) exists.
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GMont-like: Generalised Montgomery-like method

Input : C € Z,_1[X]

Output : S € Z, 1[X], such that S(v) = C(7)¢~! (mod p)
Q + (coy---,¢n-1)G" (mod @)

T+ (q0;---,qn-1)9

S—(C+T)/o

return S

@ o WY =

Essential: Output coordinates with respect to the basis G
If C = ag, then:

a+ (—a mod ¢)
¢

*(—amod ¢) = ((—ap) mod ¢, (—a1) mod ¢, ... ,(—ap—1) mod ¢)

SE g
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GMont-like: Generalised Montgomery-like method

Any basis G of any sub-lattice of L3, provided that
gcd(det(G), @) = 1, can be used for internal reduction.

In particular, any (reduced) basis of L5 can be used.
So, no need to search a polynomial M.

Thus, leading to a faster, simpler and generalised parameters
generation process.
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© Redundancy in the PMNS
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Redundancy in the PMNS

e It is not precisely defined.

e We can only choose the minimum number of distinct representations
for Z/pZ elements in the PMNS.
See: Randomization of Arithmetic over PMNS (ARITH-26).

A\

Motivations:
Precisely control the redundancy for:

e smaller memory requirement to represent element,

e a more reliable randomisation. )

A new tool: the set D;

M
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D;j: the Domain j

Let j > 1 be an integer.

We define the set D; as:

n—1
Dj={teR" | t:zﬂigi and —j < pj <j}
i—0

This can be seen as an extension of the fundamental region H'.

If A€ D;, then: ||Allo <jlIG]1. \
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A representation of D,, for n = 2

Yo
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Domain Dy vs D5, for n = 2

Y

Yo
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A representation of H', D1, D, and Ds,

Y
] Yo
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Redundancy in the PMNS

Fundamental result:

The set D; contains exactly (2/)" times the set .

Property:

If £ = Lp, then each a € Z/pZ has exactly one representation in 7.

Open question: what if £ # Lg?
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Redundancy in the PMNS

Fundamental result:

The set D; contains exactly (2/)" times the set .

Property:

If £ = Lp, then each a € Z/pZ has exactly one representation in 7.

Open question: what if £ # Lg?

Consequence:
If L= Lg, then:

each a € Z/pZ has exactly (2/)" representation in D;.
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Redundancy in the PMNS

Let a € Z/pZ.

The set of representations
Let's define the set R;(a) as:

Rj(a) ={AeD;NZ" | a=A(y) (mod p)}
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Redundancy in the PMNS

Let a € Z/pZ.

The set of representations

Let's define the set R;(a) as:

Rj(a) ={AeD;NZ" | a=A(y) (mod p)}

Property:
If £L = Lg, then:

| \

#Rj(a) = (2))"

In particular, #R1(a) = 2".

Easy to compute: the representations of zeros in D;

It corresponds to the lattice points in D;.

Rj(O) = {(ao, .. .,a,,,l)g, with a; € Z N [—j,_][}
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Redundancy in the PMNS

Let us assume that £ = Lpg.
Let a € Z/pZ. If Ais its unique representation in H, then:

Ri(a) = {A+J | JeR;0)}. J
(Questions: . |

How to compute a representation in H?

How to make PMNS elements live in a set D;?

Let us first focus on D;.

N
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An interesting comparison: D; vs H

Comparison 1:
If £L = Lpg, then:
each a € Z/pZ has exactly one representation in 7.

each a € Z/pZ has exactly 2" representation in D;.

\

Comparison 2:
If A€ H, then ||Alls < [|G]|1.
If A€ Dy, then [|Allo <G ]1- )

So, same memory requirement to represent their elements.
But, different redundancies. )
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Internal reduction to D;

Let A€ Zn_l[X], with A = (OC0,0C]_, .. .,Oén_l)g.

Fundamental property:
If Vie {0,...,n—1}, —¢ < «; <0, then:

GMont-like(A) € D;.

How to make all the coordinates of an element negative?

Using the translation vector.
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The translation vector (a simplified version)

Let ABeBand C=AXx BmodE.

C = ag, with a = (ag, ..., an—1) € R" such that:
loloo < wlp—1)%[1G 1

o Let u=[w(p—1)2G71].

e The translation vector 7 is defined as follows:

T=(-u,...,—u)G.

Important: note that 7 € L.
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The translation vector (a simplified version)

Let ABeBand C=AXx BmodE.

C = ag, with a = (ag, ..., an—1) € R" such that:
lallo < w(p = 121G 1 -

o Let u=w(p—1)2|G~ ],
e The translation vector 7 is defined as follows:

T=(-u,...,—u)G.

Important: note that 7 € L.

Consequence:
° C+T:6§, with —2u < 3; < 0.

e Thus, if ¢ > 2u, then GMont-like(C + 7)) € D;.
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The translation vector: example for ¢ = 4, with u =2

g1

| Go

38/54



The translation vector: example for ¢ = 4, with u = 2

g1

[ ; Yo
...7— L] e e e e o
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About the bounds

Note: For simplicity, the parameter § for ‘free’ additions is not included. See

https://eprint.iacr.org/2023/1231 for full formulas and details.

Old bounds on p and ¢:

WV

2“g||17
2wp.

P
¢

V

New bounds for reduction in Dy, using T

p=IGlL+1,
¢ =2u,

with u = [w||G|12IG~1||1].
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Reduction to the fundamental
regions H and H’
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SMont-like: a Signed GMont-like

Let us assume that ¢ is an even integer.

Input : C € Z,_1[X]

Output : S € Z,_1[X], such that S(y) = C(7)¢~! (mod p)
Q < (co,---,¢n—1)G" (mod @) # Q coeffs are reduced in [-2, 2[
T < (qo,---,9n-1)G

S« (C+T)/g

return S

S T N
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Reduction to H and H’

Let A € Zp_1[X] be a polynomial.

Property 1

If A€ Dy, then:
GMont-like"(A) € H .

Property 2
If A€ #H, then SMont-like(A) € #'.

Consequence
If A€ Dy, then:

SMont-like(GMont-like"(A)) € H'.

Note that H' and H have the same redundancy, while H' requires less memory to
represent its elements.
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Example: Let p = 291791, a 19-bit prime integer

Let B = (p,n,7,p, E) = (p, 2, 11810, 841, X2 — 2) be a PMNS, with:

G (247 420
- \—-593 173/ °
We have det(G) = p, so L = Lp.
R1(0) = {—593X + 346, —173X + 593, —420X — 247,0}

The unique representation of a = 122706 in H is A(X) = 381X — 39,
with: 219186 110487
_ 1) =
(=39,381) (291791’ 291791)

Gg.

So, R1(a) = {—212X + 307, 208X + 554, —39X — 286, 381X — 39}.

Its unique representation in H' is —39X — 286, with:

—72605 110487
291791’ 291791

(—286, —39) = ( )G .
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@ Equality test in the PMNS
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Equality test in the PMNS

Let A,B € B.

Check if A(v) = B(y) (mod p), without conversion out of the PMNS.

Fundamental property:
Let A € L, such that: A=aG. So a € Z".
If Vi e {0,....,n—1}, —¢ < a; <0, then:

GMont-like(A) =0
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Equality test in the PMNS

We assume that ¢ > 2u > 4, with u = [w(p — 1)?[|G71||1].

If A,B € B, then: A— B =vgG, with ||[V]s <2 < ¢.

So, the previous property applies.

A=B <= GMont-like((A—B)+7)=0

.

Works regardless of PMNS redundancy.

Does not require that £ = Lp.

\
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Implementations

Codes to generate PMNS, study its redundancy, perform equality test
(with examples) and much more are available at:

https://github.com/arithPMNS /PMNS-and-redundancy

The associated GitHub account also contains repositories that provide C code generators
from PMNS parameters.
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© Bonus: behavior of lattice points
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GMont-like and lattice points

Let A € L, such that: A=aG. So, o € Z".

If S = GMont-like(C), then S = 3G, with:

Invariant for GMont-like

A = GMont-like(A) < a; € {0,1},Vi € {0,....,n — 1}

Def: Canonical representations set

Let's define the canonical representation set O of L as:

O ={(ag,...,an-1)G | aj € {0,1}}
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Canonical representations set, for n = 2

g1

Go

Figure: O = H edges’
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Canonical representation

Let A € £, such that: A= ag.

Property: Canonical representation of A

There exists k > 0 an integer and A € O, such that:

A = GMont-like*(A)

Definition:

A is called the canonical representation of A.

51/54



Computation of the canonical representation

Let A € £, such that: A= «ag.

Property: One step to the canonical representation
If Vi € {0,....,n—1}, —¢ < aj < ¢. Then:
A = GMont-like(A)
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Computation of the canonical representation

Let A € £, such that: A= ag.

Property: One step to the canonical representation
If Vi € {0,....,n—1}, —¢ < aj < ¢. Then:
A = GMont-like(A)

Property: a very simple case, when (the sign of) «; is known

A= G,

1if a; >0,
/Bi={

with:

0 if not
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Computation of the canonical representation

g1

Yo
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Conclusion

We have highlighted some limitations of the Mont-like (based on the
polynomial M).

We have simplified and generalised parameters generation process.

We have provided tools and results to define and control the
redundancy in the PMNS.

We presented a simple way to perform equality test within the PMNS
(even when the system is redundant).

Perspectives/questions

How to express the redundancy in H when £ # Lz7?

Friendly bases for more security and/or efficiency?
See: https://eprint.iacr.org/2025/090 (efficiency)
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The external reduction matrix £

Let's assume E(X) = X" + e, 1 X" 14+ e X + €.

—€ —€ ... —€r—1\ «+ X"mod E
— X" 1 mod E

— X2'2 mod E

R=(cor---»Cn1) + (Coy- - C2n2)E |

Let & be the (n— 1) x n matrix such that & = |€j;|. Then,

”RHOO < WHAHOOHBHoo, J

where w = ||(1,2,...,n)+(n—1,n— ) o | e
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Conversion operations

ConvToPMNS: conversion from Z/pZ to B

1: Inputs: a € Z/pZ and Pi(X) = (B'¢p?)s, for i =0...(n—1)
2: Ensure: A= (a.9)p
3: t =(ap—1,...,a0)p # radix- decomposition of a

n—1
4: U+ E t; P;
i=0
5: A <~ GMont-like(V)

6: return A

with 8 = 2.

Conversion from B to Z/pZ

Let A € Z,_1[X]. We compute: a = A(y)¢~! (mod p).
Can be optimised using precomputation or Horner polynomial evaluation
method.
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