A (UC) analysis of Android Protected Confirmation

Maiwenn Racouchot (joint work with M.Arapinis, V.Danos, D.Robin and T.Zacharias)
January 17, 2025

Context

Android Protected Confirmation: use case

B)

Transfer $100 to Bob O

Android Protected Confirmation: use case

A\ \ _\

111
F__ 9

Transw to Bob O

Trusted Execution Environment

e secure area of the main processor
e can isolate code and data in memory

e protects integrity and confidentiality of what is stored inside

Limitation: some application might benefit from the functionnalities of the TEE but
don’t have code in it.

Trusted User Interface:

e Secure channel between the TEE and the user

e Untappable by the ROS

Double-press power

Cancel >

®

Android Protected Confirmation

You are going to transfer 4200 EUR to IBAN
DE16533700240123456701

Model of the phone

mk . mvk
TEE
msk
o I ROS O
° Key Store | App 1 App 2 App n
t I

Overview of the APC protocol: participants

4)
TEE : ~
ROS <1 \

\M/
°I Key | App | App App O
hd Store 1 PN n
m
 §

Overview of the APC protocol: use case

Challenge
\ request

A\ _\

f \ J \\/Chaenge

I rROS

Transfer $100 to Bob O /fM/

Overview of the APC protocol: use case

A\ \ _\

TUI

Do you validate
“Transfer $100 to Bob”?

Overview of the APC protocol: use case

|
\ ;
4 -)
10T
TEE Q
°| g‘\‘% Chall O
' \.v allenge

Overview of the APC protocol: use case

]
]
J
4)
it rOS A
 {
) ! g\‘&> Challengew O

i

Overview of the APC protocol: use case

A\ _\

=7
Py,
O
w

12

Overview of the APC protocol: use case

]
’
\ y
f
t ros /
o €23
! i
\

13

Protocol presentation

Retrieving information on the protocol [And]

No RFC or detailed specification of the protocol. Information scattered over different
pages.

i Developers Ecsontiols = Dosign&Plan Dvelop = Google Play Q @ Egisn ~ Ancroidsudo Signin
PP QUALITY
Ovorview Corovalue Userewperionce Technicalqualty Privacy & Socurity
onthis page
Addtional esources
Ardrid ovloprs > s Pan > Aopually > Py § Securty Wastrishotun 9 G
Overview

Biog

vy . Android Protected Confirmation o - e Tecommended oo

Securty with natwork protocols

Security N Tohelp a they has mak . supported st o oxts
devices thatrun Ancroid 9 (AP1levl 28) o higher et you use Ancroid Protected Confirmation. When using this i 20 02

Securiy guidelines workflow, your app displays a prompt to the user, asking them to approve a short statement that reaffirms their intent Network securty configuration

nprove your app's scurty o complete the sensiive ransacton. v 2001

Hoouthe app securty I the user accepts the statement, your app can use a key from Android Keystore to sign the message shown in the
improvement program

dialog. The signature indicates, with very high confidence, that the user has seen the statement and has agreed to it.
+ Understand commmon security
risks

 Protsct aganst secuiy theats o
vith Safeylet

the user, Your spp can't
assume any confidentiaity guarantees beyond those that the Androld platform ofers:

In particular, don't se this

Verify hardware-backed key.

After the user confirns the message, the message's integrity Is assured, but your app must stil use data-in-ransit
Workwith cryptography encryption o protect the cofidentialty o the signed message.
Workwith the Android Keystore:
Fun embedded DEX code To for higt app, complete the

airectly from APK
1. Generate an o sing
pass true into) - Also, cal

Builder class. When creating the key,
- Protect data sent over a network

s lenge() , passing a
About securty with netvork suitable challenge value provided by the relying party.
protocals
2. Enroll key and your relying party.
Customize your network
to your server q turn a binary large object (BLOB) of extra

data. Extra data might

the prompt

14

Retrieving information on the protocol [Dan18]

No RFC or detailed specification of the protocol. Information scattered over different
pages.

Android Developers Blog

™
Platform AndroidStudio GooglePlay Jotpack Kotlin Docs News M oM EOY > OOV

or s pos

W Twitter

[Android Protected Confirmation:

B tivein Taking transaction security to the

B Email

e next level

—

Contts oo b e, waver o
15

Overview of the protocol

Protocol in three phases:

1. Setup phase: certification of the TEE, setup of the server, installation of
applications on the phone

16

Overview of the protocol

Protocol in three phases:

1. Setup phase: certification of the TEE, setup of the server, installation of
applications on the phone

2. Registration phase: generation of the application’s signing key pair and
registration on the server

16

Overview of the protocol

Protocol in three phases:

1.

Setup phase: certification of the TEE, setup of the server, installation of
applications on the phone

Registration phase: generation of the application's signing key pair and
registration on the server

Transaction phase: verification of data by the user and transaction with the
server

16

Setup phase

1.Setup phase

ALICE Avrice ROS ALicE TEE Google Server

FETCHVERIFICATIONKEY

VERIFICATIONKEY, vKGoogle

Factory

ACTIVATE

(msk, mvk) = KeyGen(1*)
mk = KeyGenSym(1*)

RTIFYTEE, mvk

CertGoogle = Sign(skoogle, Mvk)||mvk

CERTIFY, certGoogle

INSTALLAPP, ApplD/ €< —-———-=—-=-=-=--
>

Install App

17

1.Setup phase

ALICE Avrice ROS ALicE TEE Google Server

(5kGoogles VKGoogle) = KeyGen(1*) |

Factory

ACTIVATE

(msk, mvk) = KeyGen(1*)
mk = KeyGenSym(1*)

RTIFYTEE, mvk

CertGoogle = Sign(skoogle, Mvk)||mvk

CERTIFY, certGoogle

INSTALLAPP, ApplD/ (P oooog
>

Install App

17

1.Setup phase

ALICE Avrice ROS ALicE TEE Google Server

(5kGoogles VKGoogle) = KeyGen(1*) |

FETCHVERIFICATIONKEY

VERIFICATIONKEY, vKGoogle

Factory

INSTALLAPP, ApplD! <
>

Install App 17
— — — —

1.Setup phase

ALICE Avrice ROS ALicE TEE Google Server

(5kGoogles VKGoogle) = KeyGen(1*) |

FETCHVERIFICATIONKEY

VERIFICATIONKEY, vKGoogle

Factory

ACTIVATE

(msk, mvk) = KeyGen(1*)
mk = KeyGenSym(1*)

RTIFYTEE, mvk

CertGoogle = Sign(skgoogle, mvk)||mvk

CERTIFY, certGoogle

Install App

17

Registration phase

2.Registration phase

UsrID; (msk, mvk), mk ApplD’.

vkGoogle
ALICE ALICE TEE ALicE ROS Server

REGISTER,ApgID’,SrvID;,UsrID;

GETCHALLENGE
ch + {0,1}*
OpenCh < ch
CHALLENGE, ch
= =]
GENKEY,PC = True,ch
(sk, vk) = KeyGen(1*)
cert = Sign(msk, (vk, ch))||certGoogle
kblob = Encrypt(mk, (sk, vk, PC = True))
KEY,ch, kblob, cert
——————————— >

FINISHREGISTRATION, UstID;, Appl D}, SrvID;, cp, vk, cert

If

ch € OpenCh
Verify(cert, vkGoogie)
Then
Register(UstID;, vk)

—_— —_— —_— —

18

2.Registration phase

UsrID; (msk, mvk), mk ApplD’, VK Google
ALICE ALICE TEE ALicE ROS Server
REGISTER, Apgi D/, SrvID;, UsrID
GETCHALLENGE
ch« {0,1}*
OpenCh < ch
CHALLENGE, ch
é __________

GENKEY,PC = True,ch

(sk, vk) = KeyGen(1*)
cert = Sign(msk, (vk, ch))||certGoogle
kblob = Encrypt(mk, (sk, vk, PC = True))

KEY, ch, kblob, cert

FINISHREGISTRATION, UstID;, Appl D}, SrvID;, cp, vk, cert

If

ch € OpenCh
Verify(cert, vkGoogie)
Then
Register(UstID;, vk)

—_— —_— —_— —

18

2.Registration phase

UsrID; (msk, mvk), mk ApplD’.

vkGoogle
ALICE ALICE TEE ALicE ROS Server

REGISTER,ApgID’,SrvID;,UsrID;

GETCHALI

GENKEY,PC = True,ch

(sk, vk) = KeyGen(1*)
cert = Sign(msk, (vk, ch))||certGoogle
kblob = Encrypt(mk, (sk, vk, PC = True))

KEY, ch, kblob, cert

FINISHREGISTRATION, UstID;, Appl D}, SrvID;, cp, vk, cert

If

ch € OpenCh
Verify(cert, vkGoogie)
Then
Register(UstID;, vk)

—_— —_— —_— —

18

2.Registration phase

UsrID; (msk, mvk), mk ApplD’.

vkGoogle
ALICE ALICE TEE ALicE ROS Server

REGISTER,ApgID’,SrvID;,UsrID;

GETCHALLENGE

ch + {0,1}*
OpenCh < ch

CHALLENGE, ch

- —=>
FINISHREGISTRATION, UstID;, Appl D}, SrvID;, cp, vk, cert

If

ch € OpenCh
Verify(cert, vkGoogie)
Then
Register(UstID;, vk)

—_— —_— —_— —

18

2.Registration phase

UsrID; (msk, mvk), mk ApplD’, VK Google
ALICE ALICE TEE ALICE ROS Server
REGISTER,ApgID’,SrvID;,UsrID;
GETCHALLENGE
ch« {0,1}*
OpenCh < ch
CHALLENGE, ch
= =]
ENKEY,PC = True,ch
(sk, vk) = KeyGen(1*)
cert = Sign(msk, (vk, ch))||certGoogle
kblob = Encrypt(mk, (sk, vk, PC = True))
KEY,ch, kblob, cert
——————————— >
FINISHREGIS 10N, UsrID;, ApplD;,SrvIDj, cp, v
— — —

18

3.Transaction phase

Transaction phase

(msk, mvk), mk App, kblob VKGoogle,(Alice, vk)
ALICE ALICE TEE ALl Server
TRANSACTION, dfata, ApplD},SrvID;
ASKNONCE
n+ {0,1}*
. N
NONCE, n Openl < n
ASkCONFIRMATION, data, n < === === =—=—-
CONFIRMED, data
ACCEPT,data
PendingRequest + (data, n)
L7 T Tiabuabies 7
<
RetrieveKey (kblob, mk)
Verify PC = True
Verify (data,.) € PendingRequest
o = Sign(sk, datal|n)
SIGNEDDATA, o
FINISHTRANSACTION,UsrID;, 0, data, n
If
Verify(vk,o)
Test n € OpenN
Then
Realize transaction
— — — —

19

Transaction phase

(msk, mvk), mk App, kblob VKGoogle,(Alice, vk)
ALICE ALICE TEE ALl Server
c110N, §fata, Appl DY, SrvID.
ASKNONCE
n+ {0,1}*
. N
NONCE, n Gl
ASkCONFIRMATION, data, n < === === =—=—-
CONFIRMED, data
ACCEPT,data
PendingRequest + (data, n)
L7 T Tiabuabies 7
<
RetrieveKey (kblob, mk)
Verify PC = True
Verify (data,) € PendingRequest
o = Sign(sk, datal|n)
SIGNEDDATA, o
FINISHTRANSACTION,UsrID;, 0, data, n
If
Verify(vk,o)
Test n € OpenN
Then
Realize transaction
— — — —

19

Transaction phase

(msk, mvk), mk

App, kblob VkGoogle, (Alice, vk)

Server

ALICE ALICE TEE ALl
TRANSACTION, dfata, ApplD},SrvID;
ASkCONFIRMATION, data, n
CONFIRMED, data
ACCEPT,data

PendingRequest + (data, n)
L7 T Tiabuabies 7
<

RetrieveKey (kblob, mk)

Verify PC = True

Verify (data,.) € PendingRequest

o = Sign(sk, datal|n)

SIGNEDDATA, o
— — —

FINISHTRANSACTION,UsrID;, 0, data, n

If

Verify(vk,o)
Test n € OpenN
Then

Realize transaction

— —

19

Transaction phase

(msk, mvk), mk App, kblob VKGoogle,(Alice, vk)
ALICE ALICE TEE ALl Server
TRANSACTION, §fata, ApplD/,SrvID;

ASKNONCE
n+ {0,1}*

NONCE, n Openl < n

oo e ad=s
>

SIGN,data, n, kblob

RetrieveKey kblob, mk)
Verify PC = True
Verify (data,.) € PendingRequest
o = Sign(sk, datal|n)

SIGNEDDATA, o

FINISHTRANSACTION,UsrID;, 0, data, n

If

Verify(vk,o)
Test n € OpenN
Then

Realize transaction

— — — — 19

Transaction phase

(msk, mvk), mk

A TEE

App, kblob

VKGoogle: (Alice, vk)

Server

TRANSACTION, §fata, ApplD/,SrvID;

ASKNONCE

n+ {0,1}*
. N
NONCE, n Gl
ASkCONFIRMATION, data, n <

CONFIRMED, data

ACCEPT,data

- >

FINISHTRANSACTION,UsrID;, 0, data, n

If
Verify(vk,o)
Test n € OpenN
Then

Realize transaction
I

— — 19

Transaction phase

(msk, mvk), mk App, kblob VKGoogie,(Alice, vk)
A TEE

Server

TRANSACTION, §fata, ApplD/,SrvID;

ASKNONCE

n+ {0,1}*
NONCE, n ekt

ASkCONFIRMATION, data, n < === === =—=—-
CONFIRMED, data
ACCEPT,data
——————————— >
PendingRequest + (data, n)

CONFIRMEDDATA, data, n
SIGN,data, n, kblob

RetrieveKey kblob, mk)
Verify PC = True
Verify (data,.) € PendingRequest
o = Sign(sk, datal|n)

SIGNEDDATA, o

HTT C N, UsrlD;, o, data, n

Security analysis

Protocol claim

“When using this workflow, your app displays a prompt to the user, asking them to
approve a short statement that reaffirms their intent to complete the sensitive
transaction.

If the user accepts the statement, your app can use a key from Android Keystore to
sign the message shown in the dialog. The signature indicates, with very high
confidence, that the user has seen the statement and has agreed to it." [And]

20

Claim of the protocol

“Once confirmed, your intention is cryptographically authenticated and unforgeable
when conveyed to the relying party, for example, your bank. Protected Confirmation
increases the bank’s confidence that it acts on your behalf, providing a higher
level of protection for the transaction.” [Danl8]

21

Claim of the protocol

Server accepts transaction — user has validated the transaction.

22

Threat model: participants

Alice: honest (if not the protocol has no claim)
e TEE: honest (hypothesis of the protocol)
e ROS: honest

Server: honest (if corrupted can perform any transaction anyway)

Google: honest (at least as a certification authority)

23

Threat model: Channels

Google

TEE

ROS J [Server }

User

— Untappable secure channel
--- Authenticated channel

24

Threat model: Channels

Google

TEE

User

—

ROS J

[Server }

— Untappable secure channel

--- Authenticated channel

24

Threat model: Channels

Google

TEE

User

—

ROS J

[Server }

— Untappable secure channel

--- Authenticated channel

24

Threat model: Channels

Google

TEE

User

— Untappable secure channel
--- Authenticated channel

24

Threat model: Channels

e N
Google i e :
L J '
(N ¢
TEE ROS [Server }
- J
- ~ — Untappable secure channel
User --- Authenticated channel
=)

24

Impersonation at registration:
attack and fix

Impersonation at registration (phase 2)

Description
e Principle: Duplication of the registration phase and Machine in the Middle
e Problem: The check verifies that the signature has been made by TEE.

e Consequence: The attacker can register its credentials under the victim'’s
identity (and use them to perform transactions).

25

Impersonation at registration (phase 2)

UsrID; AppID”: (mska, mvka), mka (mskg, mvkg), mkg VKGoogle

ALICE | | ALiCE ROS | | AvricE TEE | | EVE ROS | | Eve TEE | | Server

RHGISTER, ApplD/,SrvID;, UstiD;
“ GETCHALLENGE

GetChjllenge

Challepge, ch

CHALLENCE, ch D

(__________________
Key generation: vka, certy|

<€
FINISHREGISTRATION, UsrID}, ApplD?%, SrvIDj, ch, vka, cpria

[Key generation: vkg, certg|
< >

FINISHREGISTRATION, UsrID {, ApplD’, SrvID;, ch, vkg, cprte

If:

ch € OpenCh
Verify(certe, vkGoogle)
Then :
Register(UsrID;, vkg)

— O

Registration phase fix (phase 2)

INITREGISTER, A

(msk, mvk), mk

E|

bpID’,SrvID;, UsrlD;

ApplD/

GENKEY,PC = True,ch,SrvID;

GETCHALLENGE

VGoogle
Server

CHALLENGE, ch

SETCODE, ¢

AccepTCODE

(sk, vk) = KeyGenns(1")
cert = sign(msk, (vk, ch,
kblob = Encrypt(mk, (sk

)II(vk, ch, c)l|certgooge
vk, PC = True))

KEY,ch, kblob, cert

FINISHREGISTRATION, UsrlD;, Appl D, SrvID;, ch, vk, cerd
N

ch+ {0,1}*
OpenCh « ch

ch € OpenCh
Verify(vkgoogle; cert)
(code, vk) < Extract(cert)

Authenticated encryption channel

>

VERIFY REGISTRATION, code

'ACCEPTREGISTRATION, code

27

Transaction phase: attack and fix

Transaction replay attack (phase 3)

Description

e Principle: The user validates the data but

e Problem:

e The ROS can be corrupted and communicate with any server
e The (from the TEE perspective)

e Consequence: the attacker can make a honest server accept an unintended
transaction.

28

Transaction replay attack (phase 3)

(msk, mvk), mk (AppID/ kblob1),(ApplD’, kblob2)

VKGoogle: (UsrlD;, vk1) VKGoogle: (UsrID;, vk2)
ALICE ALicE TEE Arice ROS Serverl Server2
TRANSACTION, flata, Appl D/, SrvID;
> Nonce exchange: nl
Nonce
ASKCONFIRMATION, data,
<
Data confirmation: data
PendingRequest < (data, n2)
CONFIRMEDDATA, data, n2
SIGN, data,
RetrieveKey (, mk)
Verify PC = True
Verify(data, .) € PendingRequest
SIGNEDDATA,
FINISHTRANSACTION,UsrID;, 0, data,
I I I — —

29

Implementation of the attack

The target [AAM23]
o APC_Demo_APP developped by the Bern

University of Applied Sciences =
e Open source Android application, available on H
GooglePlay

The malicious app [DKM24]

e Based on the previous work of David [Rob21]
e Key generation adapted from APC_Demo_APP

30

Demonstration!

31

Transaction phase fix (phase 3)

(msk, mvk), mk App, kblob VkGoogle,(Alice,vk)
ALl Server
TRANSACTION, §lata, Appl D/, SrvID;
ASKNONCE
>
NONCE, n

ASKCONFIRMATION, data, n, SrvID; <— = = — === == - -

CONFIRMATION, data, SrvID;

ACCEPT,data, SrvID;

Confirmed + (data. n, SrvID;)

CONFIRMEDDATA, data, n, SrvID;

SIGN,data, n, kblob

o = Sign(sk, data||n|[SvID;)

SIGNEDDATA, 0

FINISHTRANSACTION,UstID;, 0, data, n

If:

Verify(vk, o)

Test n € OpenN
Test SrvID; = Server
Then
Realizetransaction
— — — —— 32

Proving security in the UC
framework

The UC framework

Computational approach

Participants modeled by interactive Turing Machines

Real world (protocol 7) / ideal world (ideal functionality F) paradigm

Guarantee: 7 is secure no matter what other processes are running in parallel

83

The UC framework

Computational approach

Participants modeled by interactive Turing Machines

Real world (protocol 7) / ideal world (ideal functionality F) paradigm

Guarantee: 7 is secure no matter what other processes are running in parallel

UC-realization

A protocol 7 is said to UC-realize the ideal functionality JF, if for every real world
adversary A, there exists a simulator S, such that for every environment Z, the
distributions of EXECx s z and EXEC; 4,z are computationally indistinguishable.

83

X
S
<)
3
]
€
®

=

O

>
%)

<

-

Ideal world

Real world

34

X
S
<)
3
]
€
®

=

O

>
%)

<

-

Ideal world

Real world

34

X
S
<)
3
]
€
®

=

O

>
%)

<

-

Ideal world

Real world

34

X
S
<)
3
]
€
®

=

O

>
%)

<

-

Ideal world

Real world

34

X
S
<)
3
]
€
®

=

O

>
%)

<

-

Ideal world

Real world

34

X
S
<)
3
]
€
®

=

O

>
%)

<

-

Ideal world

Real world

34

Describing the protocol
TGoogle R !

nree(TeelD;)] Tserver (STvID;)

h000000000000060000000005000500600 WROS(ROSIDI) Moo ocooocooooocoooso

Tuser(UsrID;) — Untappable channel
Device-user interface
- - - Authenticated encryption channel

85

Describing the protocol
TGoogle i '

mree(TeelD;)]

x A
o . Av ;
. Fouz(UsrD;, TeelD;, RosID;) i«-»| mros(RosID;) fe=====-===-co-- ;
S A :
v
Tuser(UsrID;) — Untappable channel
Device-user interface

- - - Authenticated encryption channel

85

Describing the protocol
TGoogle i '
WTEE(TeeID,-) <—t.;5’147'(7({ROS|D,',Tee|D;})J WServer(SrV|Dj)
A

x
o . Av ;
. Fouz(UsrD;, TeelD;, RosID;) i«-»| mros(RosID;) fe=====-===-co-- ;
S A :
v
Tuser(UsrID;) — Untappable channel

Device-user interface
- - - Authenticated encryption channel

85

Describing the protocol
T B e .
WTEE(TeeID,-) <—LE,{T(7({ROS|D,',TGG|D;})J WServer(SrV|Dj)
A

x
R . Av ;
. Fouz(UsrD;, TeelD;, RosID;) i«-»| mros(RosID;) fe=====-===-co-- ;
S A :
v
Tuser(UsrID;) — Untappable channel

Device-user interface
- - - Authenticated encryption channel

85

Describing the protocol

‘ Futc({Google, TeelD;}) }—»4— ————— 41 Fagc({Google,SrviD;}) 3

WTEE(TeeID,-) <—tﬁ47(7({ROS|D,‘,Tee|D;})J WServer(SrV|Dj)
A

........................ Yo
]:pM[(UerD TeelD;, RosID) N

Wuser(USHD;)

mros(RosID;) |e----- : fm ({RosID;, SrviD; })).

— Untappable channel

Device-user interface
- - - Authenticated encryption channel

85

Describing the protocol

‘ Futc({Google, TeelD;}) }—»«- ----- 4: Fagc({Google,SrviD;}) 3

WTEE(TW}UTC({ROSlDE Teel D,})J WServer(SrV|Dj)

A

........................ Yo
]:pM[(UerD TeelD;, RosID) N

Wuser(USHD,‘)

mros(RosID;) |e----- : fm({Role SriD;})).

— Untappable channel

Device-user interface
- - - Authenticated encryption channel

85

The user role: transaction phase

(msk, mvk), mk App, kblob

VKGoogle: (Alice, vk)

Server

ASKNONCE

n+ {0,1}*
. N
NONCE, n Gl
ASkCONFIRMATION, data, n <

t (data, n)

CONFIRMEDDATA, data, n

m T T sionBen e T T

RetrieveKey kblob, mk)

Verify PC = True

Verify (data,.) € PendingRequest
o = Sign(sk, datal|n)

SIGNEDDATA, o

FINISHTRANSACTION,UsrID;, 0, data, n

If
Verify(vk,o)
Test n € OpenN
Then

Realize transaction
I

— — 36

Modeling an agent: the user transaction phase

m Upon receiving (INITTRANSACTION, data, Applel:. SrvID;) from Z,

1. store data in ExpectedData,

2. send (SEND, (TRANSACTION, data, ApplDZ, SrvID;), RosID;) to
Fpuz(UsrIDj, TeelD;, RosID;).

m Upon receiving (SEND, (ssid, CONFIRM, data)) from Fpyz(UsrlD;, TeelD;, RosID;),

1. verify that data is in ExpectedData,
2. remove it from the list,

3. send (SEND, (ssid, ACCEPT, data), TeelD;) to Fpyz(UsrlD;, TeelD;, RosID;).

37

Modeling an agent: the user transaction phase

m Upon receiving (INITTRANSACTION, data, AppIDJ,:,SrvIDj) from Z,

1. store data in ExpectedData,

2. send (SEND, (TRANSACTION, data, ApplDZ, SrvID;), RosID;) to
Fpuz(UsrIDj, TeelD;, RosID;).

m Upon receiving (SEND, (ssid, CONFIRM, data)) from Fpyz(UsrlD;, TeelD;, RosID;),

1. verify that data is in ExpectedData,
2. remove it from the list,

3. send (SEND, (ssid, ACCEPT, data), TeelD;) to Fpyz(UsrlD;, TeelD;, RosID;).

37

Modeling an agent: the user transaction phase

m Upon receiving (INITTRANSACTION, data, AppIDJ,:,SrvIDj) from Z,

1. store data in ExpectedData,

2. send (SEND, (TRANSACTION, data.AppID{,SrvIDj), RosID;) to
Fpuz(UsrIDj, TeelD;, RosID;).

m Upon receiving (SEND, (ssid, CONFIRM, data)) from Fpyz(UsrlD;, TeelD;, RosID;),

1. verify that data is in ExpectedData,
2. remove it from the list,

3. send (SEND, (ssid, ACCEPT, data), TeelD;) to Fpyz(UsrlD;, TeelD;, RosID;).

37

Modeling an agent: the user transaction phase

m Upon receiving (INITTRANSACTION, data, AppIDJ,:,SrvIDj) from Z,

1. store data in ExpectedData,

2. send (SEND, (TRANSACTION, data, ApplDZ, SrvID;), RosID;) to
Fpuz(UsrIDj, TeelD;, RosID;).

m Upon receiving (SEND, (ssid, CONFIRM, data)) from Fpyz(UsrlD;, TeelD;, RosID;),

1. verify that data is in ExpectedData,
2. remove it from the list,

3. send (SEND, (ssid, ACCEPT, data), TeelD;) to Fpyz(UsrlD;, TeelD;, RosID;).

37

Modeling an agent: the user transaction phase

m Upon receiving (INITTRANSACTION, data, AppIDJ,:,SrvIDj) from Z,

1. store data in ExpectedData,

2. send (SEND, (TRANSACTION, data, ApplDZ, SrvID;), RosID;) to
Fpuz(UsrIDj, TeelD;, RosID;).

m Upon receiving (SEND, (ssid, CONFIRM, data)) from Fpyz(UsrlD;, TeelD;, RosID;),

1. verify that data is in ExpectedData,

2. remove it from the list,

3. send (SEND, (ssid, ACCEPT, data), TeelD;) to Fpyz(UsrlD;, TeelD;, RosID;).

37

Modeling an agent: the user transaction phase

m Upon receiving (INITTRANSACTION, data, AppIDJ,:,SrvIDj) from Z,

1. store data in ExpectedData,

2. send (SEND, (TRANSACTION, data, ApplDZ, SrvID;), RosID;) to
Fpuz(UsrIDj, TeelD;, RosID;).

m Upon receiving (SEND, (ssid, CONFIRM, data)) from Fpyz(UsrlD;, TeelD;, RosID;),

1. verify that data is in ExpectedData,
2. remove it from the list,

3. send (SEND, (ssid, ACCEPT, data), TeelD;) to Fpyz(UsrlD;, TeelD;, RosID;).

37

X
S
<)
3
]
€
®

=

O

>
%)

<

-

Ideal world

Real world

38

Goal of the UC functionality

Server accepts transaction — user has validated the transaction.

39

Goal of the UC functionality

Server accepts transaction — user has validated the transaction.

(TRANSACTIONACCEPTED, UsrID;, data) —
(INITTRANSACTION, data, ApplD’;, SrvIDj)

39

Ideal functionality: transaction phase, corrupted ROS

m Upon receiving (INITTRANSACTION, data, AppID{:.SrvIDJ-) from UsrlD;,

1. If (UsrlD;, SrvIDj) is in RegisteredApps, then store (UsrlD;, SrvID;, data) to
Pending Transaction.

2. Send (ALLOWTRANSACTION,ApplDJI:, RosID;, UsrID;, SrvID;, data) to S.

m Upon receiving (TRANSACTIONALLOWED,AppIDf:, SrvID;) from S, if
(UsrID;, SrvIDj, data) is in Pending Transaction, then:

1. Remove (UsrlD;, SrvID;, data) from Pending Transaction.
2. Send (TRANSACTIONACCEPTED, UsrlD;, data) to SrvID;.

40

Ideal functionality: transaction phase, corrupted ROS

m Upon receiving (INITTRANSACTION, data, AppIDJ,:,SrvIDj) from UsrID;,

1. If (UsrlD;, SrvIDj) is in RegisteredApps, then store (UsrlD;, SrvID;, data) to
Pending Transaction.

2. Send (ALLOWTRANSACTION,ApplDJI:, RosID;, UsrID;, SrvID;, data) to S.

m Upon receiving (TRANSACTIONALLOWED,AppIDf:, SrvID;) from S, if
(UsrID;, SrvIDj, data) is in Pending Transaction, then:

1. Remove (UsrlD;, SrvID;, data) from Pending Transaction.
2. Send (TRANSACTIONACCEPTED, UsrlD;, data) to SrvID;.

40

Ideal functionality: transaction phase, corrupted ROS

m Upon receiving (INITTRANSACTION, data, AppIDJ,:,SrvIDj) from UsrID;,

1. If (UsrlD;, SrvIDy) is in RegisteredApps, then store (UsrID;, SrvID;, data) to

Pending Transaction.

2. Send (ALLOWTRANSACTION,ApplDJI:, RosID;, UsrID;, SrvID;, data) to S.

m Upon receiving (TRANSACTIONALLOWED,AppIDf:, SrvID;) from S, if
(UsrID;, SrvIDj, data) is in Pending Transaction, then:

1. Remove (UsrlD;, SrvID;, data) from Pending Transaction.
2. Send (TRANSACTIONACCEPTED, UsrlD;, data) to SrvID;.

40

Ideal functionality: transaction phase, corrupted ROS

m Upon receiving (INITTRANSACTION, data, AppIDJ,:,SrvIDj) from UsrID;,

1. If (UsrlD;, SrvIDj) is in RegisteredApps, then store (UsrlD;, SrvID;, data) to
Pending Transaction.

2. Send (ALLOWTRANSACTION, ApplDJI:, RosID;, UsrID;, SrvID;, data) to S.

m Upon receiving (TRANSACTIONALLOWED,AppIDf:, SrvID;) from S, if
(UsrID;, SrvIDj, data) is in Pending Transaction, then:

1. Remove (UsrlD;, SrvID;, data) from Pending Transaction.
2. Send (TRANSACTIONACCEPTED, UsrlD;, data) to SrvID;.

40

Ideal functionality: transaction phase, corrupted ROS

m Upon receiving (INITTRANSACTION, data, AppIDJ,:,SrvIDj) from UsrID;,

1. If (UsrlD;, SrvIDj) is in RegisteredApps, then store (UsrlD;, SrvID;, data) to
Pending Transaction.

2. Send (ALLOWTRANSACTION,ApplDJI:, RosID;, UsrID;, SrvID;, data) to S.

m Upon receiving (TRANSACTIONALLOWED, AppID{. SrvID;) from S, if
(UsrID;, SrvIDj, data) is in Pending Transaction, then:

1. Remove (UsrlD;, SrvID;, data) from Pending Transaction.
2. Send (TRANSACTIONACCEPTED, UsrlD;, data) to SrvID;.

40

Ideal functionality: transaction phase, corrupted ROS

m Upon receiving (INITTRANSACTION, data, AppIDJ,:,SrvIDj) from UsrID;,

1. If (UsrlD;, SrvIDj) is in RegisteredApps, then store (UsrlD;, SrvlD;, data) to
Pending Transaction.

2. Send (ALLOWTRANSACTION,ApplDJI:, RosID;, UsrID;, SrvID;, data) to S.

m Upon receiving (TRANSACTIONALLOWED,AppIDf:, SrvID;) from S, if
(UsrlDj, SrvIDj, data) is in Pending Transaction, then:

1. Remove (UsrlD;, SrvID;, data) from Pending Transaction.
2. Send (TRANSACTIONACCEPTED, UsrlD;, data) to SrvID;.

40

Ideal functionality: transaction phase, corrupted ROS

m Upon receiving (INITTRANSACTION, data, AppIDJ,:,SrvIDj) from UsrID;,

1. If (UsrlD;, SrvIDj) is in RegisteredApps, then store (UsrlD;, SrvID;, data) to
Pending Transaction.

2. Send (ALLOWTRANSACTION,ApplDJI:, RosID;, UsrID;, SrvID;, data) to S.

m Upon receiving (TRANSACTIONALLOWED,AppIDf:, SrvID;) from S, if
(UsrID;, SrvIDj, data) is in Pending Transaction, then:

1. Remove (UsrlD;, SrvID;, data) from Pending Transaction.
2. Send (TRANSACTIONACCEPTED, UsrlD;, data) to SrviD;.

40

X
S
<)
3
]
€
®

=

O

>
%)

<

-

Ideal world

Real world

41

Introduction to the simulator

(msk, mvk), mk App, kblob VKGoogle: (Alice, vk)
ALICE AvicE TEE ALicE ROS Server
[RANSACTION, dlata,ApplD?%,SrvID;

ASKNONCE

n+ {0,1}*
N
NONCE, n Ol
ASKCONFIRMATION,data, n <— -~ ~- -~~~ ~-- "7
CONFIRMED, data B
ACCEPT,data
PendingRequest < (data, n) |
CONFIRMEDDATA,data, n
______________)

I] | I

42

Simulating the protocol: extract of the corrupted transaction phase

m Upon receiving (ALLOWTRANSACTION, ApplD{. RosID;, UsrID;, SrvIDj, data) from Fpc,

e store (AppID{7 RosID;, SrvIDj, data) in PendingAllow Transaction
e send (TRANSACTION, data,AppIDj,:, SrvID;) to A as if S was Fpyz(UsrlD;, TeelD;, RosID;)

B On behalf of F4gc({RosIDj, SrvID;}) and SrvID;, upon receiving (ASKNONCE) from A, then

e check is SrvIDj is in ActivatedServer, if not ignore the rest;

e draw a random n <& {0,1}* and store (SrvIDj, n) in PendingNonce

e send (NONCE, n) to A as if S was F 4ec({RosIDj, SrvID;}).

B On behalf of TeelD; and Fiy7¢({RosID;, TeelD;}), upon receiving (ASKCONFIRMATION, data, n, SrvID;) from
A, if there is (AppIDJI.. RosID;, SrvIDj, data) in PendingAllow Transaction,

e remove (App|D//j. RosID;, SrvIDj, data) from PendingAllow Transaction and add
(ApplD, RosIDj, SrvIDj, data) to ValidatedData

e send (CONFIRMEDDATA, data, n, SrvID;) to A as if S was Fy7¢({RosID;, TeelD;})

43

Simulating the protocol: extract of the corrupted transaction phase

B Upon receiving (ALLOWTRANSACTION,ApplDJI:, RosID;, UsrID;, SrvID;, data) from Fpc,

e store (AppID//u RosID;, SrvIDj, data) in PendingAllow Transaction
e send (TRANSACTION, data,AppIDj,:, SrvID;) to A as if S was Fpyz(UsrlD;, TeelD;, RosID;)
B On behalf of F4gc({RosIDj, SrvID;}) and SrvID;, upon receiving (ASKNONCE) from A, then

e check is SrvIDj is in ActivatedServer, if not ignore the rest;

e draw a random n <& {0,1}* and store (SrvIDj, n) in PendingNonce

e send (NONCE, n) to A as if S was F 4ec({RosIDj, SrvID;}).

B On behalf of TeelD; and Fiy7¢({RosID;, TeelD;}), upon receiving (ASKCONFIRMATION, data, n, SrvID;) from
A, if there is (AppIDJI.. RosID;, SrvIDj, data) in PendingAllow Transaction,

e remove (App|D//j. RosID;, SrvIDj, data) from PendingAllow Transaction and add
(ApplD, RosIDj, SrvIDj, data) to ValidatedData

e send (CONFIRMEDDATA, data, n, SrvID;) to A as if S was Fy7¢({RosID;, TeelD;})

43

Simulating the protocol: extract of the corrupted transaction phase

B Upon receiving (ALLOWTRANSACTION,ApplDJI:, RosID;, UsrID;, SrvID;, data) from Fpc,

e store (AppID{7 RosID;, SrvIDj, data) in PendingAllow Transaction

e send (TRANSACTION, data, ApplD//:, SrvlDj) to A as if S was Fpyz(UsrID;, TeelD;, RosID;)
B On behalf of F4gc({RosIDj, SrvID;}) and SrvID;, upon receiving (ASKNONCE) from A, then

e check is SrvIDj is in ActivatedServer, if not ignore the rest;

e draw a random n <& {0,1}* and store (SrvIDj, n) in PendingNonce

e send (NONCE, n) to A as if S was F 4ec({RosIDj, SrvID;}).

B On behalf of TeelD; and Fiy7¢({RosID;, TeelD;}), upon receiving (ASKCONFIRMATION, data, n, SrvID;) from
A, if there is (AppIDJI.. RosID;, SrvIDj, data) in PendingAllow Transaction,

e remove (App|D//j. RosID;, SrvIDj, data) from PendingAllow Transaction and add
(ApplD, RosIDj, SrvIDj, data) to ValidatedData

e send (CONFIRMEDDATA, data, n, SrvID;) to A as if S was Fy7¢({RosID;, TeelD;})

43

Introduction to the simulator

(msk, mvk), mk App, kblob VKGoogle: (Alice, vk)
ALICE AvicE TEE ALicE ROS Server
TRANSACTION, dlata, ApplD’,SrvID;

A SKNONCI
n+ {0,1}*
NONCE, n OpenlV «—n

ASKCONFIRMATION,data, n <— -~ ~- -~~~ ~-- "7
CONFIRMED, data B
ACCEPT,data
PendingRequest < (data, n) |
CONFIRMEDDATA,data, n
______________)

I I]]

44

Simulating the protocol: extract of the corrupted transaction phase

m Upon receiving (ALLOWTRANSACTION, ApplDJ/:. RosID;, UsrID;, SrvID;, data) from Fpc,

e store (App|DJ,:, RosID;, SrvIDj, data) in PendingAllow Transaction
e send (TRANSACTION, data, AppIDJI:. SrvIDj) to A as if S was Fpyz(UsrID;, TeelD;, RosID;)
B On behalf of F4gc({RosIDj, SrvID;}) and SrvID;, upon receiving (AskNoNCE) from A, then

o check is SrvID; is in ActivatedServer, if not ignore the rest;

e draw a random n <& {0,1}* and store (SrvID;, n) in PendingNonce

e send (NONCE, n) to A as if S was Fagc({RosID;, SrvID;}).

B On behalf of TeelD; and Fiy7¢({RosID;, TeelD;}), upon receiving (ASKCONFIRMATION, data, n, SrvID;) from
A, if there is (AppIDJI.. RosID;, SrvIDj, data) in PendingAllow Transaction,

e remove (App|D//j. RosID;, SrvIDj, data) from PendingAllow Transaction and add
(ApplD, RosIDj, SrvIDj, data) to ValidatedData

e send (CONFIRMEDDATA, data, n, SrvID;) to A as if S was Fy7¢({RosID;, TeelD;})

45

Simulating the protocol: extract of the corrupted transaction phase

m Upon receiving (ALLOWTRANSACTION, ApplDJ/:. RosID;, UsrID;, SrvID;, data) from Fpc,

e store (App|DJ,:, RosID;, SrvIDj, data) in PendingAllow Transaction
e send (TRANSACTION, data, AppIDJI:. SrvIDj) to A as if S was Fpyz(UsrID;, TeelD;, RosID;)
B On behalf of F4gc({RosIDj, SrvID;}) and SrvIDj, upon receiving (ASKNONCE) from A, then

e check is SrvID; is in ActivatedServer, if not ignore the rest;

e draw a random n <& {0,1}* and store (SrvID;, n) in PendingNonce

e send (NONCE, n) to A as if S was Fagc({RosID;, SrvID;}).

B On behalf of TeelD; and Fiy7¢({RosID;, TeelD;}), upon receiving (ASKCONFIRMATION, data, n, SrvID;) from
A, if there is (AppIDJI.. RosID;, SrvIDj, data) in PendingAllow Transaction,

e remove (App|D//j. RosID;, SrvIDj, data) from PendingAllow Transaction and add
(ApplD, RosIDj, SrvIDj, data) to ValidatedData

e send (CONFIRMEDDATA, data, n, SrvID;) to A as if S was Fy7¢({RosID;, TeelD;})

45

Simulating the protocol: extract of the corrupted transaction phase

m Upon receiving (ALLOWTRANSACTION, ApplDJ/:. RosID;, UsrID;, SrvID;, data) from Fpc,

e store (App|DJ,:, RosID;, SrvIDj, data) in PendingAllow Transaction
e send (TRANSACTION, data, AppIDJI:. SrvIDj) to A as if S was Fpyz(UsrID;, TeelD;, RosID;)

B On behalf of F4gc({RosIDj, SrvID;}) and SrvIDj, upon receiving (ASKNONCE) from A, then

o check is SrvID; is in ActivatedServer, if not ignore the rest;
e draw a random n < {0,1}* and store (SrvIDj, n) in PendingNonce

e send (NONCE, n) to A as if S was Fagc({RosID;, SrvID;}).

B On behalf of TeelD; and Fiy7¢({RosID;, TeelD;}), upon receiving (ASKCONFIRMATION, data, n, SrvID;) from
A, if there is (AppIDJI.. RosID;, SrvIDj, data) in PendingAllow Transaction,

e remove (App|D//j. RosID;, SrvIDj, data) from PendingAllow Transaction and add
(ApplD, RosIDj, SrvIDj, data) to ValidatedData

e send (CONFIRMEDDATA, data, n, SrvID;) to A as if S was Fy7¢({RosID;, TeelD;})

45

Simulating the protocol: extract of the corrupted transaction phase

m Upon receiving (ALLOWTRANSACTION, ApplDJ/:. RosID;, UsrID;, SrvID;, data) from Fpc,

e store (App|DJ,:, RosID;, SrvIDj, data) in PendingAllow Transaction
e send (TRANSACTION, data, AppIDJI:. SrvIDj) to A as if S was Fpyz(UsrID;, TeelD;, RosID;)
B On behalf of F4gc({RosIDj, SrvID;}) and SrvIDj, upon receiving (ASKNONCE) from A, then

o check is SrvID; is in ActivatedServer, if not ignore the rest;

e draw a random n <& {0,1}* and store (SrvID;, n) in PendingNonce

e send (NoncE, n) to A as if S was Fagc({RosIDj, SrviD;}).

B On behalf of TeelD; and Fiy7¢({RosID;, TeelD;}), upon receiving (ASKCONFIRMATION, data, n, SrvID;) from
A, if there is (AppIDJI.. RosID;, SrvIDj, data) in PendingAllow Transaction,

e remove (App|D//j. RosID;, SrvIDj, data) from PendingAllow Transaction and add
(ApplD, RosIDj, SrvIDj, data) to ValidatedData

e send (CONFIRMEDDATA, data, n, SrvID;) to A as if S was Fy7¢({RosID;, TeelD;})

45

Introduction to the simulator

(msk, mvk), mk App, kblob VKGoogle: (Alice, vk)
ALICE AvicE TEE ALicE ROS Server
TRANSACTION, dfata, Appl D, SrvID;

ASKNONCE

n+ {0,1}*
N
NONCE, n Ol
ASKCONFIRMATION, data,n [<- - -~ -~~~ ~-==-1
CONFIRMED, data B
ACCEPT,data
PendingRequest < (data, n)
CONFIRMEDDATA,data, n
______________)

I I]]

46

Simulating the protocol: extract of the corrupted transaction phase

m Upon receiving (ALLOWTRANSACTION, ApplDJ/:. RosID;, UsrID;, SrvID;, data) from Fpc,

e store (App|DJ,:, RosID;, SrvIDj, data) in PendingAllow Transaction
e send (TRANSACTION, data, AppIDJI:. SrvIDj) to A as if S was Fpyz(UsrID;, TeelD;, RosID;)
B On behalf of F4gc({RosIDj, SrvID;}) and SrvID;, upon receiving (ASKNONCE) from A, then

e check is SrvIDj is in ActivatedServer, if not ignore the rest;

e draw a random n <& {0,1}* and store (SrvIDj, n) in PendingNonce

e send (NONCE, n) to A as if S was F 4ec({RosIDj, SrvID;}).

B On behalf of TeelD; and F7/7¢({RosID;, TeelD;}), upon receiving (AsKCONFIRMATION, data, n, SrvID;) from
A, if there is (/—\ppIDj,.7 RosID;, SrvIDj, data) in PendingAllow Transaction,

e remove l(AppIDJ,.', RosIDj, SrvIDj, data) from PendingAllow Transaction and add
(AppIDf., RosID;, SrvIDj, data) to ValidatedData

e send (CONFIRMEDDATA, data, n, SrvID;) to A as if S was Fy7¢({RosID;, TeelD;})

47

Simulating the protocol: extract of the corrupted transaction phase

m Upon receiving (ALLOWTRANSACTION, ApplDJ/:. RosID;, UsrID;, SrvID;, data) from Fpc,

e store (AppIDJ/u RosID;, SrvIDj, data) in PendingAllow Transaction
e send (TRANSACTION, data, AppIDJI:. SrvIDj) to A as if S was Fpyz(UsrID;, TeelD;, RosID;)
B On behalf of F4gc({RosIDj, SrvID;}) and SrvID;, upon receiving (ASKNONCE) from A, then

e check is SrvIDj is in ActivatedServer, if not ignore the rest;

e draw a random n <& {0,1}* and store (SrvIDj, n) in PendingNonce

e send (NONCE, n) to A as if S was F 4ec({RosIDj, SrvID;}).

B On behalf of TeelD; and Furc({RosID;, TeelD;}), upon receiving (ASKCONFIRMATION, data, n, SrvID;) from
A, if there is (ApplD’, RosIDj, SrvID;, data) in PendingAllowTransaction,

e remove l(AppIDJ,.', RosIDj, SrvIDj, data) from PendingAllow Transaction and add
(AppIDf., RosID;, SrvIDj, data) to ValidatedData

e send (CONFIRMEDDATA, data, n, SrvID;) to A as if S was Fy7¢({RosID;, TeelD;})

47

Simulating the protocol: extract of the corrupted transaction phase

m Upon receiving (ALLOWTRANSACTION, ApplDJ/:. RosID;, UsrID;, SrvID;, data) from Fpc,

e store (App|DJ,:, RosID;, SrvIDj, data) in PendingAllow Transaction
e send (TRANSACTION, data, AppIDJI:. SrvIDj) to A as if S was Fpyz(UsrID;, TeelD;, RosID;)
B On behalf of F4gc({RosIDj, SrvID;}) and SrvID;, upon receiving (ASKNONCE) from A, then

e check is SrvIDj is in ActivatedServer, if not ignore the rest;

e draw a random n <& {0,1}* and store (SrvIDj, n) in PendingNonce

e send (NONCE, n) to A as if S was F 4ec({RosIDj, SrvID;}).

B On behalf of TeelD; and Furc({RosID;, TeelD;}), upon receiving (ASKCONFIRMATION, data, n, SrvID;) from
A, if there is (/—\ppIDj,.7 RosID;, SrvIDj, data) in PendingAllow Transaction,

® remove (AppIDJ/j. RosID;, SrvIDj, data) from PendingAllow Transaction and add
(ApplD%, RosIDj, SrvIDj, data) to ValidatedData

e send (CONFIRMEDDATA, data, n, SrvID;) to A as if S was Fy7¢({RosID;, TeelD;})

47

Simulating the protocol: extract of the corrupted transaction phase

m Upon receiving (ALLOWTRANSACTION, ApplDJ/:. RosID;, UsrID;, SrvID;, data) from Fpc,

e store (App|DJ,:, RosID;, SrvIDj, data) in PendingAllow Transaction
e send (TRANSACTION, data, AppIDJI:. SrvIDj) to A as if S was Fpyz(UsrID;, TeelD;, RosID;)

B On behalf of F4gc({RosIDj, SrvID;}) and SrvID;, upon receiving (ASKNONCE) from A, then

e check is SrvIDj is in ActivatedServer, if not ignore the rest;

e draw a random n <& {0,1}* and store (SrvIDj, n) in PendingNonce

e send (NONCE, n) to A as if S was F 4ec({RosIDj, SrvID;}).

B On behalf of TeelD; and Furc({RosID;, TeelD;}), upon receiving (ASKCONFIRMATION, data, n, SrvID;) from
A, if there is (/—\ppIDj,.7 RosID;, SrvIDj, data) in PendingAllow Transaction,

e remove l(AppIDJ,.', RosIDj, SrvIDj, data) from PendingAllow Transaction and add
(AppIDf., RosID;, SrvIDj, data) to ValidatedData

e send (CONFIRMEDDATA, data, n, SrvID;) to A as if S was Fyy7¢({RosID;, TeelD;})

47

UC proof conclusion

Mapc does not UC-realizes F
(would accept a transaction with the wrong server id)
Mapc fix does UC-realizes F

48

Conclusion

Conclusion

Results

e Two attacks on the deployed protocol APC

1. Impersonation at registration attack
2. Transaction phase attack (PoCl!)

e Fixes of both attacks have been proved in UC

e Google acknowledged our findings

— Paper under submission at Euro S&P

49

Thank you for your attention !

Questions?

50

Bibliography i

[APCDemo and Anti-Myon.
Apc_demo_app.
https://github.com/APCDemo/APC_Demo_App, 2023

[Android.
Android protected confirmation.
https://developer.android.com/privacy-and-security/

security-android-protected-confirmation.

51

https://github.com/APCDemo/APC_Demo_App
https://developer.android.com/privacy-and-security/security-android-protected-confirmation
https://developer.android.com/privacy-and-security/security-android-protected-confirmation

Bibliography ii

[4 Janis Danisevskis.
Android protected confirmation: Taking transaction security to the next
level.
https://android-developers.googleblog.com/2018/10/

android-protected-confirmation.html, 2018.
[§] Jannik Dreier, Steve Kremer, and Racouchot Maiwenn.
Additional resources, 2024.

[3] David Robin.
Yubidroid.
https://www.robindar.com/yubidroid/getting-source-code, 2021.

52

https://android-developers.googleblog.com/2018/10/android-protected-confirmation.html
https://android-developers.googleblog.com/2018/10/android-protected-confirmation.html
https://www.robindar.com/yubidroid/getting-source-code

	Context
	Protocol presentation
	Setup phase
	Registration phase
	3.Transaction phase
	Security analysis
	Impersonation at registration: attack and fix
	Transaction phase: attack and fix
	Replay attack

	Proving security in the UC framework
	Conclusion

