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Trusted Execution Environment

e secure area of the main processor
e can isolate code and data in memory

e protects integrity and confidentiality of what is stored inside

Limitation: some application might benefit from the functionnalities of the TEE but
don’t have code in it.



Trusted User Interface:

e Secure channel between the TEE and the user

e Untappable by the ROS

Double-press power

Cancel >

®

Android Protected Confirmation

You are going to transfer 4200 EUR to IBAN
DE16533700240123456701
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Protocol presentation



Retrieving information on the protocol [And]

No RFC or detailed specification of the protocol. Information scattered over different
pages.

i Developers  Ecsontiols = Dosign&Plan Dvelop = Google Play Q @ Egisn ~ Ancroidsudo  Signin
PP QUALITY
Ovorview  Corovalue  Userewperionce  Technicalqualty  Privacy & Socurity
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Securiy guidelines workflow, your app displays a prompt to the user, asking them to approve a short statement that reaffirms their intent Network securty configuration

nprove your app's scurty o complete the sensiive ransacton. v 2001

Hoouthe app securty I the user accepts the statement, your app can use a key from Android Keystore to sign the message shown in the
improvement program

dialog. The signature indicates, with very high confidence, that the user has seen the statement and has agreed to it.
+ Understand commmon security
risks

 Protsct aganst secuiy theats o
vith Safeylet

the user, Your spp can't
assume any confidentiaity guarantees beyond those that the Androld platform ofers:

In particular, don't se this

Verify hardware-backed key.

After the user confirns the message, the message's integrity Is assured, but your app must stil use data-in-ransit
Workwith cryptography encryption o protect the cofidentialty o the signed message.
Workwith the Android Keystore:
Fun embedded DEX code To for higt app, complete the

airectly from APK
1. Generate an o sing
pass true into ) - Also, cal

Builder class. When creating the key,
- Protect data sent over a network

s lenge() , passing a
About securty with netvork suitable challenge value provided by the relying party.
protocals
2. Enroll key and your relying party.
Customize your network
to your server q turn a binary large object (BLOB) of extra

data. Extra data might
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Retrieving information on the protocol [Dan18]

No RFC or detailed specification of the protocol. Information scattered over different
pages.
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Overview of the protocol

Protocol in three phases:

1. Setup phase: certification of the TEE, setup of the server, installation of
applications on the phone
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Overview of the protocol

Protocol in three phases:

1.

Setup phase: certification of the TEE, setup of the server, installation of
applications on the phone

Registration phase: generation of the application's signing key pair and
registration on the server

Transaction phase: verification of data by the user and transaction with the
server

16



Setup phase




1.Setup phase

ALICE Avrice ROS ALicE TEE Google Server

FETCHVERIFICATIONKEY

VERIFICATIONKEY, vKGoogle

Factory

ACTIVATE

(msk, mvk) = KeyGen(1*)
mk = KeyGenSym(1*)

RTIFYTEE, mvk

CertGoogle = Sign(skoogle, Mvk)||mvk

CERTIFY, certGoogle

INSTALLAPP, ApplD/ €< —-———-=—-=-=-=--
>

Install App
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1.Setup phase
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>
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1.Setup phase

ALICE Avrice ROS ALicE TEE Google Server

(5kGoogles VKGoogle) = KeyGen(1*) |

FETCHVERIFICATIONKEY

VERIFICATIONKEY, vKGoogle

Factory

ACTIVATE

(msk, mvk) = KeyGen(1*)
mk = KeyGenSym(1*)

RTIFYTEE, mvk

CertGoogle = Sign(skgoogle, mvk)||mvk

CERTIFY, certGoogle

Install App
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Registration phase




2.Registration phase

UsrID; (msk, mvk), mk ApplD’.

vkGoogle
ALICE ALICE TEE ALicE ROS Server

REGISTER,ApgID’,SrvID;,UsrID;

GETCHALLENGE
ch + {0,1}*
OpenCh < ch
CHALLENGE, ch
= =]
GENKEY,PC = True,ch
(sk, vk) = KeyGen(1*)
cert = Sign(msk, (vk, ch))||certGoogle
kblob = Encrypt(mk, (sk, vk, PC = True))
KEY,ch, kblob, cert
——————————— >

FINISHREGISTRATION, UstID;, Appl D}, SrvID;, cp, vk, cert

If

ch € OpenCh
Verify(cert, vkGoogie)
Then
Register(UstID;, vk)

—_— —_— —_— —
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vkGoogle
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GETCHALLENGE

ch + {0,1}*
OpenCh < ch

CHALLENGE, ch

- —=>
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If
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Verify(cert, vkGoogie)
Then
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2.Registration phase

UsrID; (msk, mvk), mk ApplD’, VK Google
ALICE ALICE TEE ALICE ROS Server
REGISTER,ApgID’,SrvID;,UsrID;
GETCHALLENGE
ch« {0,1}*
OpenCh < ch
CHALLENGE, ch
= =]
ENKEY,PC = True,ch
(sk, vk) = KeyGen(1*)
cert = Sign(msk, (vk, ch))||certGoogle
kblob = Encrypt(mk, (sk, vk, PC = True))
KEY,ch, kblob, cert
——————————— >
FINISHREGIS 10N, UsrID;, ApplD;,SrvIDj, cp, v
— — —
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3.Transaction phase




Transaction phase

(msk, mvk), mk App, kblob VKGoogle,(Alice, vk)
ALICE ALICE TEE ALl Server
TRANSACTION, dfata, ApplD},SrvID;
ASKNONCE
n+ {0,1}*
. N
NONCE, n Openl < n
ASkCONFIRMATION, data, n < === === =—=—-
CONFIRMED, data
ACCEPT,data
PendingRequest + (data, n)
L7 T Tiabuabies 7
<
RetrieveKey (kblob, mk)
Verify PC = True
Verify (data,.) € PendingRequest
o = Sign(sk, datal|n)
SIGNEDDATA, o
FINISHTRANSACTION,UsrID;, 0, data, n
If
Verify(vk,o)
Test n € OpenN
Then
Realize transaction
— — — —
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Transaction phase

(msk, mvk), mk

App, kblob VkGoogle, (Alice, vk)

Server

ALICE ALICE TEE ALl
TRANSACTION, dfata, ApplD},SrvID;
ASkCONFIRMATION, data, n
CONFIRMED, data
ACCEPT,data

PendingRequest + (data, n)
L7 T Tiabuabies 7
<

RetrieveKey (kblob, mk)

Verify PC = True

Verify (data,.) € PendingRequest

o = Sign(sk, datal|n)

SIGNEDDATA, o
— — —

FINISHTRANSACTION,UsrID;, 0, data, n

If

Verify(vk,o)
Test n € OpenN
Then

Realize transaction

— —

19



Transaction phase
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Transaction phase

(msk, mvk), mk

A TEE

App, kblob

VKGoogle: (Alice, vk)

Server

TRANSACTION, §fata, ApplD/,SrvID;

ASKNONCE

n+ {0,1}*
. N
NONCE, n Gl
ASkCONFIRMATION, data, n <

CONFIRMED, data

ACCEPT,data

- >

FINISHTRANSACTION,UsrID;, 0, data, n

If
Verify(vk,o)
Test n € OpenN
Then

Realize transaction
I
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Transaction phase

(msk, mvk), mk App, kblob VKGoogie,(Alice, vk)
A TEE

Server

TRANSACTION, §fata, ApplD/,SrvID;

ASKNONCE

n+ {0,1}*
NONCE, n ekt

ASkCONFIRMATION, data, n < === === =—=—-
CONFIRMED, data
ACCEPT,data
——————————— >
PendingRequest + (data, n)

CONFIRMEDDATA, data, n
SIGN,data, n, kblob

RetrieveKey kblob, mk)
Verify PC = True
Verify (data,.) € PendingRequest
o = Sign(sk, datal|n)

SIGNEDDATA, o

HTT C N, UsrlD;, o, data, n




Security analysis




Protocol claim

“When using this workflow, your app displays a prompt to the user, asking them to
approve a short statement that reaffirms their intent to complete the sensitive
transaction.

If the user accepts the statement, your app can use a key from Android Keystore to
sign the message shown in the dialog. The signature indicates, with very high
confidence, that the user has seen the statement and has agreed to it." [And]

20



Claim of the protocol

“Once confirmed, your intention is cryptographically authenticated and unforgeable
when conveyed to the relying party, for example, your bank. Protected Confirmation
increases the bank’s confidence that it acts on your behalf, providing a higher
level of protection for the transaction.” [Danl8]

21



Claim of the protocol

Server accepts transaction — user has validated the transaction.
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Threat model: participants

Alice: honest (if not the protocol has no claim)
e TEE: honest (hypothesis of the protocol)
e ROS: honest

Server: honest (if corrupted can perform any transaction anyway)

Google: honest (at least as a certification authority)

23



Threat model: Channels

Google

TEE

ROS J [ Server }

User

— Untappable secure channel
--- Authenticated channel
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Threat model: Channels

e N
Google i e :
L J '
( N ¢
TEE ROS [ Server }
- J
- ~ — Untappable secure channel
User --- Authenticated channel
= )
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Impersonation at registration:
attack and fix




Impersonation at registration (phase 2)

Description
e Principle: Duplication of the registration phase and Machine in the Middle
e Problem: The check verifies that the signature has been made by TEE.

e Consequence: The attacker can register its credentials under the victim'’s
identity (and use them to perform transactions).

25



Impersonation at registration (phase 2)

UsrID; AppID”: (mska, mvka), mka (mskg, mvkg), mkg VKGoogle

ALICE | | ALiCE ROS | | AvricE TEE | | EVE ROS | | Eve TEE | | Server

RHGISTER, ApplD/,SrvID;, UstiD;
“ GETCHALLENGE

GetChjllenge

Challepge, ch

CHALLENCE, ch D

( __________________
Key generation: vka, certy|

<€
FINISHREGISTRATION, UsrID}, ApplD?%, SrvIDj, ch, vka, cpria

[Key generation: vkg, certg|
< >

FINISHREGISTRATION, UsrID {, ApplD’, SrvID;, ch, vkg, cprte

If:

ch € OpenCh
Verify(certe, vkGoogle)
Then :
Register(UsrID;, vkg)

— O




Registration phase fix (phase 2)

INITREGISTER, A

(msk, mvk), mk

E|

bpID’,SrvID;, UsrlD;

ApplD/

GENKEY,PC = True,ch,SrvID;

GETCHALLENGE

VGoogle
Server

CHALLENGE, ch

SETCODE, ¢

AccepTCODE

(sk, vk) = KeyGenns(1")
cert = sign(msk, (vk, ch,
kblob = Encrypt(mk, (sk

)II(vk, ch, c)l|certgooge
vk, PC = True))

KEY,ch, kblob, cert

FINISHREGISTRATION, UsrlD;, Appl D, SrvID;, ch, vk, cerd
N

ch+ {0,1}*
OpenCh « ch

ch € OpenCh
Verify(vkgoogle; cert)
(code, vk) < Extract(cert)

Authenticated encryption channel

>

VERIFY REGISTRATION, code

'ACCEPTREGISTRATION, code
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Transaction phase: attack and fix




Transaction replay attack (phase 3)

Description

e Principle: The user validates the data but

e Problem:

e The ROS can be corrupted and communicate with any server
e The (from the TEE perspective)

e Consequence: the attacker can make a honest server accept an unintended
transaction.

28



Transaction replay attack (phase 3)

(msk, mvk), mk (AppID/ kblob1),(ApplD’, kblob2)

VKGoogle: (UsrlD;, vk1) VKGoogle: (UsrID;, vk2)
ALICE ALicE TEE Arice ROS Serverl Server2
TRANSACTION, flata, Appl D/, SrvID;
> Nonce exchange: nl
Nonce
ASKCONFIRMATION, data,
<
Data confirmation: data
PendingRequest < (data, n2)
CONFIRMEDDATA, data, n2
SIGN, data,
RetrieveKey ( , mk)
Verify PC = True
Verify(data, .) € PendingRequest
SIGNEDDATA,
FINISHTRANSACTION,UsrID;, 0, data,
I I I — —

29



Implementation of the attack

The target [AAM23]
o APC_Demo_APP developped by the Bern

University of Applied Sciences =
e Open source Android application, available on H
GooglePlay

The malicious app [DKM24]

e Based on the previous work of David [Rob21]
e Key generation adapted from APC_Demo_APP

30



Demonstration!
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Transaction phase fix (phase 3)

(msk, mvk), mk App, kblob VkGoogle,(Alice,vk)
ALl Server
TRANSACTION, §lata, Appl D/, SrvID;
ASKNONCE
>
NONCE, n

ASKCONFIRMATION, data, n, SrvID; <— = = — === == - -

CONFIRMATION, data, SrvID;

ACCEPT,data, SrvID;

Confirmed + (data. n, SrvID;)

CONFIRMEDDATA, data, n, SrvID;

SIGN,data, n, kblob

o = Sign(sk, data||n|[SvID;)

SIGNEDDATA, 0

FINISHTRANSACTION,UstID;, 0, data, n

If:

Verify(vk, o)

Test n € OpenN
Test SrvID; = Server
Then
Realizetransaction
— — — —— 32




Proving security in the UC
framework




The UC framework

Computational approach

Participants modeled by interactive Turing Machines

Real world (protocol 7) / ideal world (ideal functionality F) paradigm

Guarantee: 7 is secure no matter what other processes are running in parallel

83



The UC framework

Computational approach

Participants modeled by interactive Turing Machines

Real world (protocol 7) / ideal world (ideal functionality F) paradigm

Guarantee: 7 is secure no matter what other processes are running in parallel

UC-realization

A protocol 7 is said to UC-realize the ideal functionality JF, if for every real world
adversary A, there exists a simulator S, such that for every environment Z, the
distributions of EXECx s z and EXEC; 4,z are computationally indistinguishable.

83
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Describing the protocol
TGoogle R !

nree(TeelD;) ] Tserver (STvID;)

h000000000000060000000005000500600 WROS(ROSIDI) Moo ocooocooooocoooso

Tuser(UsrID;) — Untappable channel
Device-user interface
- - - Authenticated encryption channel

85



Describing the protocol
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x A
o . Av ;
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S A ......................... :
v
Tuser(UsrID;) — Untappable channel
Device-user interface
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Describing the protocol
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A

........................ Yo
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Describing the protocol
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The user role: transaction phase

(msk, mvk), mk App, kblob

VKGoogle: (Alice, vk)

Server

ASKNONCE

n+ {0,1}*
. N
NONCE, n Gl
ASkCONFIRMATION, data, n <

t  (data, n)

CONFIRMEDDATA, data, n

m T T sionBen e T T

RetrieveKey kblob, mk)

Verify PC = True

Verify (data,.) € PendingRequest
o = Sign(sk, datal|n)

SIGNEDDATA, o

FINISHTRANSACTION,UsrID;, 0, data, n

If
Verify(vk,o)
Test n € OpenN
Then

Realize transaction
I

— — 36




Modeling an agent: the user transaction phase

m Upon receiving (INITTRANSACTION, data, Applel:. SrvID;) from Z,

1. store data in ExpectedData,

2. send (SEND, (TRANSACTION, data, ApplDZ, SrvID;), RosID;) to
Fpuz(UsrIDj, TeelD;, RosID;).

m Upon receiving (SEND, (ssid, CONFIRM, data)) from Fpyz(UsrlD;, TeelD;, RosID;),

1. verify that data is in ExpectedData,
2. remove it from the list,

3. send (SEND, (ssid, ACCEPT, data), TeelD;) to Fpyz(UsrlD;, TeelD;, RosID;).
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Goal of the UC functionality

Server accepts transaction — user has validated the transaction.
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Goal of the UC functionality

Server accepts transaction — user has validated the transaction.

(TRANSACTIONACCEPTED, UsrID;, data) —
(INITTRANSACTION, data, ApplD’;, SrvIDj)
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Ideal functionality: transaction phase, corrupted ROS

m Upon receiving (INITTRANSACTION, data, AppID{:.SrvIDJ-) from UsrlD;,

1. If (UsrlD;, SrvIDj) is in RegisteredApps, then store (UsrlD;, SrvID;, data) to
Pending Transaction.

2. Send (ALLOWTRANSACTION,ApplDJI:, RosID;, UsrID;, SrvID;, data) to S.

m Upon receiving (TRANSACTIONALLOWED,AppIDf:, SrvID;) from S, if
(UsrID;, SrvIDj, data) is in Pending Transaction, then:

1. Remove (UsrlD;, SrvID;, data) from Pending Transaction.
2. Send (TRANSACTIONACCEPTED, UsrlD;, data) to SrvID;.
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Introduction to the simulator

(msk, mvk), mk App, kblob VKGoogle: (Alice, vk)
ALICE AvicE TEE ALicE ROS Server
[RANSACTION, dlata,ApplD?%,SrvID;

ASKNONCE

n+ {0,1}*
N
NONCE, n Ol
ASKCONFIRMATION,data, n <— -~ ~- -~~~ ~-- "7
CONFIRMED, data B
ACCEPT,data
PendingRequest < (data, n) |
CONFIRMEDDATA,data, n
______________ )

I ] | I
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Simulating the protocol: extract of the corrupted transaction phase

m Upon receiving (ALLOWTRANSACTION, ApplD{. RosID;, UsrID;, SrvIDj, data) from Fpc,

e store (AppID{7 RosID;, SrvIDj, data) in PendingAllow Transaction
e send (TRANSACTION, data,AppIDj,:, SrvID;) to A as if S was Fpyz(UsrlD;, TeelD;, RosID;)

B On behalf of F4gc({RosIDj, SrvID;}) and SrvID;, upon receiving (ASKNONCE) from A, then

e check is SrvIDj is in ActivatedServer, if not ignore the rest;

e draw a random n <& {0,1}* and store (SrvIDj, n) in PendingNonce

e send (NONCE, n) to A as if S was F 4ec({RosIDj, SrvID;}).

B On behalf of TeelD; and Fiy7¢({RosID;, TeelD;}), upon receiving (ASKCONFIRMATION, data, n, SrvID;) from
A, if there is (AppIDJI.. RosID;, SrvIDj, data) in PendingAllow Transaction,

e remove (App|D//j. RosID;, SrvIDj, data) from PendingAllow Transaction and add
(ApplD, RosIDj, SrvIDj, data) to ValidatedData

e send (CONFIRMEDDATA, data, n, SrvID;) to A as if S was Fy7¢({RosID;, TeelD;})
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Simulating the protocol: extract of the corrupted transaction phase

m Upon receiving (ALLOWTRANSACTION, ApplDJ/:. RosID;, UsrID;, SrvID;, data) from Fpc,

e store (App|DJ,:, RosID;, SrvIDj, data) in PendingAllow Transaction
e send (TRANSACTION, data, AppIDJI:. SrvIDj) to A as if S was Fpyz(UsrID;, TeelD;, RosID;)
B On behalf of F4gc({RosIDj, SrvID;}) and SrvID;, upon receiving (AskNoNCE) from A, then

o check is SrvID; is in ActivatedServer, if not ignore the rest;

e draw a random n <& {0,1}* and store (SrvID;, n) in PendingNonce

e send (NONCE, n) to A as if S was Fagc({RosID;, SrvID;}).

B On behalf of TeelD; and Fiy7¢({RosID;, TeelD;}), upon receiving (ASKCONFIRMATION, data, n, SrvID;) from
A, if there is (AppIDJI.. RosID;, SrvIDj, data) in PendingAllow Transaction,

e remove (App|D//j. RosID;, SrvIDj, data) from PendingAllow Transaction and add
(ApplD, RosIDj, SrvIDj, data) to ValidatedData
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Simulating the protocol: extract of the corrupted transaction phase

m Upon receiving (ALLOWTRANSACTION, ApplDJ/:. RosID;, UsrID;, SrvID;, data) from Fpc,

e store (App|DJ,:, RosID;, SrvIDj, data) in PendingAllow Transaction
e send (TRANSACTION, data, AppIDJI:. SrvIDj) to A as if S was Fpyz(UsrID;, TeelD;, RosID;)
B On behalf of F4gc({RosIDj, SrvID;}) and SrvID;, upon receiving (ASKNONCE) from A, then

e check is SrvIDj is in ActivatedServer, if not ignore the rest;

e draw a random n <& {0,1}* and store (SrvIDj, n) in PendingNonce

e send (NONCE, n) to A as if S was F 4ec({RosIDj, SrvID;}).

B On behalf of TeelD; and F7/7¢({RosID;, TeelD;}), upon receiving (AsKCONFIRMATION, data, n, SrvID;) from
A, if there is (/—\ppIDj,.7 RosID;, SrvIDj, data) in PendingAllow Transaction,

e remove l(AppIDJ,.', RosIDj, SrvIDj, data) from PendingAllow Transaction and add
(AppIDf., RosID;, SrvIDj, data) to ValidatedData

e send (CONFIRMEDDATA, data, n, SrvID;) to A as if S was Fy7¢({RosID;, TeelD;})
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UC proof conclusion

Mapc does not UC-realizes F
(would accept a transaction with the wrong server id)
Mapc fix does UC-realizes F
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Conclusion




Conclusion

Results

e Two attacks on the deployed protocol APC

1. Impersonation at registration attack
2. Transaction phase attack (PoCl!)

e Fixes of both attacks have been proved in UC

e Google acknowledged our findings

— Paper under submission at Euro S&P
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Thank you for your attention !

Questions?
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