% -
S universite

CentraleSupélec | PARIS-SACLAY

y 4
y 4

<

Hardware Trojan Horses and Microarchitectural
Side-Channel Attacks: Detection and Mitigation
via Hardware-based Methodologies

Alessandro Palumbo

Associate Professor at CentraleSupélec, Paris-Saclay University, Inria SUSHI Team, Rennes Campus

mailto:alessandro.palumbo@inria.fr
https://palessumbo.github.io/

HARDWARE SECURITY

“Cybersecurity experts have traditionally assumed that the hardware underlying
iInformation systems is secure and trusted. It has been demonstrated that such assumption
is no longer true.”

Prof. Mark M. Tehranipoor, PhD, Fellow of IEEE, ACM, NAI

(9) .
Y universite

\ 4
CentraleSupélec | PARIS-SACLAY %

. 2
lrezia — /;/;Js ,

G Hardware Security

Exploring methodologies to analyze and detect potential malicious activity in

microprocessors

c-,,> Hardware Vulnerabilities

Introduction

« Hardware Trojan Horses
 Reverse Engineering
* |IP Piracy
* IP cloning
« Side-Channel Attacks
* Microarchitectural SCAs

* Physical attacks

(v) o
Y universite

CentraleSupélec | PARIS-SACLAY

lreeia—

Counterfeiting

« Overproduction

+ |C cloning

Backdoors

« Circuit modifications leaking secrets

Tampering

c-,,> Hardware Vulnerabilities

Introduction

« Hardware Trojan Horses

 Reverse Engineering
* |IP Piracy

* IP cloning

« Side-Channel Attacks

 Microarchitectural SCAs

Counterfeiting

« Overproduction

+ |C cloning

Backdoors

« Circuit modifications leaking secrets

* Physical attacks

(9) o
Y universite

CentraleSupélec | PARIS-SACLAY

lreeia—

Tampering

FPGA bitstream modifications

Cn Hardware Trojan Horses

Background

« What is an Hardware Trojan Horse?

« A malicious addition or modification to the existing circuit elements

 What an Hardware Trojan Horse can do?
« Change the functionality
* Reduce the reliability

 |Leak valuable information

(v) .
Y universite

CentraleSupélec | PARIS-SACLAY

lreeia—

Cn Hardware Trojan Horses

Background

* Modify a Function Modify the Specification

 Noise

’ﬂ
CentraleSupélec = PARIS -SACLAY \
- -~
5 7 j 7 ",
W - 5“5“: +

Cn Hardware Trojan Horses

Introduction — Taxonomy

Hardware Trojans
Insertion Phase || Abstraction Level [| Activation Mechanism Effect Location Physical Characteristic
_)48pecification Always On > Change _ﬂ Processor
Functionality)
—{Desion] »{ Development | L_{Tiggered —>{siz]
Environment > Degrade - o

_)| Register Transfer |
Testing 3 Leak Information _ﬂ Power Supply‘ Parametric
C N e — —{Pamectd

I Denial of Service I i i
Assembly and s [Physical Gondition —% | _ﬂ Clock Gnd‘ ___)@
Package _)lm 7 o

Physicall Externally —)@
: ——{Component Outpur]

Y

°
univers Ite Component Output —){@

CentraleSupélec | PARIS-SACLAY e
lrrzia — *https://trust-hub.org/#/home

https://trust-hub.org/

Cry Hardware Trojan Horses: Just Research?

Introduction — The motivation

« The Rosenbridge backdoor* has been found in a commercial Via Technologies C3

processor

» A specific sequence of instructions allowed the attacker to activate the Rosenbridge

backdoor and enter the supervisor mode

* Via Technologies officially commented that this behavior was due to an

undocumented feature meant for debugging

&)

(J
) unlver5|te

4
e * *C. Domas, “Hardware backdoors in x86 cpus.” https://i.blackhat.com/us-18/Thu-August-9/us-18-Domas-God-Mode-
&qua__—- N Unlocked-Hardware-Backdoors-In-x86-CPUs-wp.pdf,

S BUSHI Y,

https://i.blackhat.com/us-18/Thu-August-9/us-18-Domas-God-Mode-Unlocked-Hardware-Backdoors-In-x86-CPUs-wp.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Domas-God-Mode-Unlocked-Hardware-Backdoors-In-x86-CPUs-wp.pdf

Cn Hardware Trojan Horses

Background

« What is an Hardware Trojan Horse?

« A malicious addition or modification to the existing circuit elements

 What an Hardware Trojan Horse can do?
« Change the functionality
* Interfering with Fetch instruction activity
* Reduce the reliability

 Leak valuable information

. 9

Cy .
P université § g
CentraleSupélec | PARIS-SACLAY
6"2, 7 f o @
W tsusﬂ:‘

Co Architectural Countermeasure 1/2 Approach

Detecting Hardware Trojans Interfering with Fetching Instruction Activity

« Add an online Hardware Security Module to analyze and detect potential malicious

fetching instruction activity interferences

* The programmable is useful to specify what is « legit »

N.| HARDWARE
PROGRAMMING DATA SECURITY | WARNING >
| “mopuLe

MAIN FETCH DECODE EXECUTION MEMORY » WB STAGE
MEMORY | STAGE | STAGE “| STAGE g UNIT ”

&)

Cy . %
université § g
CentraleSupélec | PARIS-SACLAY
6"2, 7 f o @
W - 5“5“: +

c-,,> Architectural Countermeasure 1/2 Idea

Detecting Hardware Trojans Interfering with Fetching Instruction Activity

« Configuration phase e
 The HSM stores the information about > woora | i
USER SPACE o wstpio }— MAIN MEMORY N I—
legit address-instruction pairs | |

HARDWARE SECURITY MODULE

CentraleSupélec | PARIS-SACLAY

DxABilSSFS
 Query Phase -
I i ——_{ ADDRET)] OxOOOEOOOUD
» The HSM checks at runtime if the MICROPROGESSOR oo 1 stAmeNoRY l C—
fetched instructions are leqgit , ;
. HARDWARE SECURITY MODULE
O') université \ f

[1] A. Palumbo, et al. “A lightweight security checking module to protect microprocessors against hardware trojan horses,”in 2021
IEEE International Symposium on Defect and Fault Tolerance in VLS| and Nanotechnology Systems (DFT), pp. 1- 6, 2021

lreeia—

c-,,> Architectural Countermeasure 1/2 Idea

Detecting Hardware Trojans Interfering with Fetching Instruction Activity

« Configuration phase > nxABiisaFa
Ox00000000
« The HSM stores the information
about legit address-instruction —{_ ool | xE0600000
USER SPACE » wsm% WMAIN MEMORY CONFIG
pairs ‘ | ARAYy
[ADDR[T:0] . INSTRI[7:0]]—) HASH FUNC ;i
1 il AH%W‘ WARNING
.,—'—""'_'-r._
[ADDR[15:8] . INSTR[15:8] :]—b HASH:FUNG i D
¥ v .
[ADDR[31:24] , INSTR[31:24]]—y HASH FUNGC 10|
. 7]

D [1] A. Palumbo, et al. “A lightweight security checking module to protect microprocessors against hardware trojan horses,”in 2021
&z’ua._— IEEE International Symposium on Defect and Fault Tolerance in VLS| and Nanotechnology Systems (DFT), pp. 1- 6, 2021

@ o &
.J universite \ 4 ARRAY, 4 HARDWARE SECURITY MODULE
CentraleSupélec | PARIS-SACLAY

c-,,> Architectural Countermeasure 1/2 Idea

Detecting Hardware Trojans Interfering with Fetching Instruction Activity

 Query Phase
« The HSM checks at

runtime if the fetched

Instructions are legit

s o o)
9 université § g
CentraleSupélec | PARIS-SACLAY
- 5% [1] A. Palumbo, et al. “A lightweight security checking module to protect microprocessors against hardware trojan horses,”in 2021
./::Jsui , IEEE International Symposium on Defect and Fault Tolerance in VLS| and Nanotechnology Systems (DFT), pp. 1- 6, 2021

lrezia—

MICROPROCESSOR

%[31 0] |

A

(INSTRM(——
[31:0]

v

0xAB3456F8

0x3345BEDO

0x00000000

INSTR MEMORY

QUERY

h 4 Y

ADDR[7:0], INSTR[7:0]

I

A 4 Y

HASH FUNC

[

ADDR([15:8], INSTR[15:8]

N

A 4 A

HASH FUNC

[

ADDRI[31:24] , INSTR[31:24]

I

HASH FUNC

: WARNING

HARDWARE SECURITY MODULE

c-,,> Architectural Countermeasure 1/2 Idea

Detecting Hardware Trojans Interfering with Fetching Instruction Activity

* Qu el’y Phase p OxAB.’;L4-56FB

0x3345BEDOQ

« The HSM checks at runtime
if the fetched instructions ——{ soorerol | R

MICROPROCESSOR (

. 0x00000000 QUEHY
|NSTRM INSTR MEMORY
| ——

are legit ARRAY,

Y Y
[ADDR[7:0] , INSTR[7:0]]—» HASH FUNC

A

A Y
[ADDR[15:8] , INSTR[15:8]]—) HASH FUNC

WARNING
—>

A 4 A 4
[ADDR[31:24] , INSTR[31:24]]—» HASH FUNC

>y ARRAY HARDWARE SECURITY MODULE

s ° o
9 université § g
CentraleSupélec | PARIS-SACLAY
s 5% [1] A. Palumbo, et al. “A lightweight security checking module to protect microprocessors against hardware trojan horses,”in 2021
&z’ua._— ./::Jsui , IEEE International Symposium on Defect and Fault Tolerance in VLS| and Nanotechnology Systems (DFT), pp. 1- 6, 2021

c-,,> Architectural Countermeasure 1/2 Idea

Detecting Hardware Trojans Interfering with Fetching Instruction Activity

e Threat Model 1

 Injecting the fetch of a malicious instruction not part of the installed program

Address Hequireg

Instruction

Proposal in [1]

Proposal in [2]

I,_
OxABOZFF56
PC=0x01 OxFF3469A8
CORE
= Ox00000000

(‘/.) o n
universite

CentraleSupélec | PARIS-SACLAY \

INSTR MEMORY

[1] A. Palumbo, et al. “A lightweight security checking module to protect microprocessors against hardware trojan horses,”in 2021
IEEE International Symposium on Defect and Fault Tolerance in VLS| and Nanotechnology Systems (DFT), pp. 1- 6, 2021

[2] A. Bolat, et al. “A microprocessor protection architecture against hardware trojans in memories, ”in 2020 15th Design Technology
of Integrated Systems in Nanoscale Era (DTIS), pp. 1-6, 2020.

L
-

To Be Executed

Bench. Fp EN FP FN
BinS 0% 0% | 0% 0.523%
MM 0% 0% | 0% 0.520%
Bub$S 0% 0% | 0% 0.572%
QS 0% 0% | 0% 0.607%
SD 0% 0% | 0% 0.249%
MD 0% 0% | 0% 0.912%
AVG 0% 0% | 0% 0.663%

c-,,> Architectural Countermeasure 1/2 Idea

Detecting Hardware Trojans Interfering with Fetching Instruction Activity

e Threat Model 2

 Injecting the fetch of an instruction part of the installed program, but in a « wrong moment »

| Proposal in [1]

; Address Required g . Bench. Fp EN
OxABO2FF56 .

PC=0x01 0XFF3469AB | | B1inS 0% 2.25%

: % Instruction MM 0% 040 %

CORE e BubS 0% 3.01%

.:mmgl[mm QS 0% 3.91%

: SD 0% 0.72%

INSTR MEMORY MD 0% 2.83%

AVG 0% 2.18%

s ° o
9 université § g
CentraleSupélec | PARIS-SACLAY
s 5? [1] A. Palumbo, et al. “A lightweight security checking module to protect microprocessors against hardware trojan horses,”in 2021
&Z’Z&d.—-—- ./::Jsui , IEEE International Symposium on Defect and Fault Tolerance in VLS| and Nanotechnology Systems (DFT), pp. 1- 6, 2021

c-,,> Architectural Countermeasure 1/2 Idea

Detecting Hardware Trojans Interfering with Fetching Instruction Activity

 FPGA Emulation

» Resources usage compared with RISCY-V PULPINO core

Bench Proposal in [1] Proposal in [2]

) #LUTs #FFs BRAM size | Freq. (MHz) #LUTs #FFs BRAM size | Freq. (MHz)
BinS 75 (0.49%) 31 (0.31%) 208 Kbit 275 MHz 880 (5.83%) 84 (0.85%) 32 KBit 112 MHz
MM 75 (0.49%) 31 (0.31%) 208 Kbit 275 MHz 880 (5.83%) 84 (0.85%) 32 KBit 112 MHz
BubS 75 (0.49%) 31 (0.31%) 208 Kbit 275 MHz 880 (5.83%) 84 (0.85%) 32 KBit 112 MHz
0S 75 (0.49%) 31 (0.31%) 208 Kbit 275 MHz 880 (5.83%) 84 (0.85%) 32 KBit 112 MHz
SS 75 (0.49%) 31 (0.31%) 208 Kbit 275 MHz 1539 (10.19%) 89 (0.90%) 64 KBit 106 MHz
MD 75 (0.49%) 31 (0.31%) 208 Kbit 275 MHz 1539 (10.19%) 89 (0.90%) 64 KBit 106 MHz
(‘,.) o e 5 [1] A. Palumbo, et al. “A lightweight security checking module to protect microprocessors against hardware trojan horses,”in 2021

universite

CentraleSupélec | PARIS-SACLAY \

IEEE International Symposium on Defect and Fault Tolerance in VLS| and Nanotechnology Systems (DFT), pp. 1- 6, 2021
[2] A. Bolat, et al. “A microprocessor protection architecture against hardware trojans in memories, ”in 2020 15th Design Technology
of Integrated Systems in Nanoscale Era (DTIS), pp. 1-6, 2020.

« Two goals at the same time: ARRAYq

¢y

c"-) Architectural Countermeasure 1/2 ldea Evolution

Improving the Detection Hardware Trojans Interfering with Fetching Instruction Activity

* Protecting from HTHs
° Correcting Brt F“pS »—»[ADDR[15:8] , INSTR[15:8]]—» HASH.FUI\IC

[]
universite

CentraleSupélec | PARIS-SACLAY

rd

(e

rd

za—

. 9

%

—{ ADDR[31:0]][INSTR[31:0] I

\

»—»[ADDR(7:0] , INSTR([7:0]]—» HASH FUNC

Y

) :
.»—»{ ADDR[31:24] , INSTR[31:24]]—» HASH FUNC

CONFIG / QUERY

: WARNING

HAMMING

Y
(=]
ury
(=]
o
=

COMPUTATION

000000

P

000000

HAMMING MEMORY

[3] A. Palumbo, et al. “lmproving the detection of hardware trojan horses in microprocessors via hamming codes,”in 2023 IEEE
International Symposium on Defect and Fault Tolerance in VLS| and Nanotechnology Systems (DFT), pp. 1-6, 2023.

c-,,> Architectural Countermeasure 1/2 Idea

Improving the Detection Hardware Trojans Interfering with Fetching Instruction Activity

Solution in [3]

Solution in [1]

Solution in [2]

e Threat Model 1 Bench. | o EN | Fp EN | Fp EN
: : : .. BinS 0% 0% | 0% 0% | 0% 0.523%
 Injecting the fetching of a malicious MM 0% 0% | 0% 0% | 0% 0.520%
. . . BubS 0% 0% | 0% 0% | 0% 0.572%
instruction not part of the installed program 05 0% 0% | 0% 0% | 0% 0.607%
EB SS 0% 0% | 0% 0% | 0% 0.249%
Addltess Requir MD 0% 0% 0% 0% 0% 0.912%
S ABOIEF CM 0% 0% | 0% 0% | - -
PC=0x01 OXFF3469AB | MED 0% 0% | 0% 0% - -
- | TW 0% 0% | 0% 0% - -
p— Instruction , RS 0% 0% 0% 0% _ _
: To Be Executed AVG 0% 0% | 0% 0% | 0% 0.663%

—» Ox00000000

INSTR I'I.I;EMDHY [1] A. Palumbo, et al. “A lightweight security checking module to protect microprocessors against hardware trojan horses,”in 2021

IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp. 1- 6, 2021.
(‘/.) o % i [2] A. Bolat, et al. “A microprocessor protection architecture against hardware trojans in memories,”in 2020 15th Design Technology
universite of Integrated Systems in Nanoscale Era (DTIS), pp. 1-6, 2020.

CentraleSupélec | PARIS-SACLAY \
-~
» /5
W tsusﬂ:‘

[3] A. Palumbo, et al. “Improving the detection of hardware trojan horses in microprocessors via hamming codes,”in 2023 IEEE
International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp. 1-6, 2023.

Cen

tr

Cy

aleSupél

c-,,> Architectural Countermeasure 1/2 Idea

Improving the Detection Hardware Trojans Interfering with Fetching Instruction Activity

Threat Model 2 Bench Solution in [3] Solution in [1]
' FP FN FP FN
* Injecting the fetching of an instruction part of the g3 5 0.00% 0.00% | 0.00% 2.25%
installed program, but in a « wrong moment » MM 0.00% 0.34% | 0.00% 0.40%
BubS 0.00% 0.50% | 0.00% 3.01%
Adchress Required g QS 0.00% 0.08% | 0.00% 391%
[>) SS 0.00% 0.00% | 0.00% 0.72%
oo gﬁggjﬁﬁ: , MD 0.00% 0.00% | 0.00% 2.83%
- Py | CM 0.00% 0.11% | 0.00% 5.67%
p— ool MED 0.00% 0.18% | 0.00% 2.60%
: To Be Exeouted TW 0.00% 021% | 0.00% 7.34%
0x00000000 RS 0.00% 0.05% | 0.00% 3.34%
NSTREMORY AVG 0.00% 0.15% | 0.00% 2.29%

Ps 3 [1] A. Palumbo, et al. “A lightweight security checking module to protect microprocessors against hardware trojan horses,”in 2021

PARIS-SACLAY

.. N
) universite %
lreeia— ./::E,;, ‘

IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp. 1- 6, 2021.
[3] A. Palumbo, et al. “lmproving the detection of hardware trojan horses in microprocessors via hamming codes,”in 2023 IEEE
International Symposium on Defect and Fault Tolerance in VLS| and Nanotechnology Systems (DFT), pp. 1-6, 2023.

c-,,> Architectural Countermeasure 1/2 Idea

Improving the Detection Hardware Trojans Interfering with Fetching Instruction Activity

 FPGA Emulation

Resource usage compared with RISCY-V PULPINO core

Bench Solution in [3] Solution in [1] Solution in [2]

' #LUTs #FFs #BRAM | F. (MHz) #LUTs #FFs #BRAM | E (MHz) #LUTs #FFs BRAM | F. (MHz)
BinS 82 (0.53%) 31 (0.31%) 8.5 | 275 MHz 75 (0.49%) 31 (0.31%) 8 | 275 MHz 880 (5.43%) 84 (0.84%) 1 | 112 MHz
MM 82 (0.53%) 31 (0.31%) 8.5 | 275 MHz 75 (0.49%) 31 (0.31%) 8 | 275 MHz 880 (5.43%) 84 (0.84%) 1 | 112 MHz
Bub$S 82 (0.53%) 31 (0.31%) 8.5 | 275 MHz 75 (0.49%) 31 (0.31%) 8 | 275 MHz 880 (5.43%) 84 (0.84%) 1 | 112 MHz
QS 82 (0.53%) 31 (0.31%) 8.5 | 275 MHz 75 (0.49%) 31 (0.31%) 8 | 275 MHz 880 (5.43%) 84 (0.84%) 1 | 112 MHz
SS 82 (0.53%) 31 (0.31%) 8.5 | 275 MHz 75 (0.49%) 31 (0.31%) 8 | 275 MHz 1539 (9.13%) 89 (0.89%) 1 106 MHz
MD 82 (0.53%) 31 (0.31%) 8.5 | 275 MHz 75 (0.49%) 31 (0.31%) 8 | 275 MHz 1539 (9.13%) 89 (0.89%) 1 106 MHz
CM 82 (0.53%) 31 (0.31%) 8.5 | 275 MHz 75 (0.49%) 31 (0.31%) 8 | 275 MHz - - - -
MED 82 (0.53%) 31 (0.31%) 8.5 | 275 MHz 75 (0.49%) 31 (0.31%) 8 | 275 MHz - - - -
W 82 (0.53%) 31 (0.31%) 8.5 | 275 MHz 75 (0.49%) 31 (0.31%) 8 | 275 MHz - - - -
RS 82 (0.53%) 31 (0.31%) 9.5 | 275 MHz 75 (0.49%) 31 (0.31%) 8 | 275 MHz - - - -

[1] A. Palumbo, et al. “A lightweight security checking module to protect microprocessors against hardware trojan horses,”in 2021

IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp. 1- 6, 2021.

C'/.) A U i [2] A. Bolat, et al. “A microprocessor protection architecture against hardware trojans in memories,”in 2020 15th Design Technology
BanbediecapBe ,Eﬂ',!_%{ﬁ,'_g? % of Integrated Systems in Nanoscale Era (DTIS), pp. 1-6, 2020.
- ‘ [3] A. Palumbo, et al. “lmproving the detection of hardware trojan horses in microprocessors via hamming codes,”in 2023 IEEE
&Z’Z&Ia.-—- ./::Jsui , International Symposium on Defect and Fault Tolerance in VLS| and Nanotechnology Systems (DFT), pp. 1-6, 2023.

Cry Hardware Trojan Horses: Just Research?

Introduction — The motivation

« The Rosenbridge backdoor* has been found in a commercial Via Technologies C3 processor

« A specific sequence of instructions allowed the attacker to activate the Rosenbridge

backdoor and enter the supervisor mode

« Via Technologies officially commented that this behavior was due to an undocumented feature

meant for debugging

How can we avoid Software Exploitable

Hardware Trojan Horse activations?
(‘/.) université \ i

Cemra]esup?ec PARIS-SACEAY ,‘_ *C. Domas, “Hardware backdoors in x86 cpus.” https://i.blackhat.com/us-18/Thu-August-9/us-18-Domas-God-Mode-
lrrzia — /::Jsui\ Unlocked-Hardware-Backdoors-In-x86-CPUs-wp.pdf, @

https://i.blackhat.com/us-18/Thu-August-9/us-18-Domas-God-Mode-Unlocked-Hardware-Backdoors-In-x86-CPUs-wp.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Domas-God-Mode-Unlocked-Hardware-Backdoors-In-x86-CPUs-wp.pdf

c-,,> Architectural Countermeasure 2/2 ldea

Preventing the Activation of Software-Exploitable Hardware Trojan Horses

 Add an online Hardware Code Obfuscator (HCO) in a microprocessor: injecting confusion
* Modify the instructions of the program - an Hardware Compiler at runtime!
« Adding register scrambling instructions
« Adding xoring instructions data after writes and the dexoring data instructions before

reads J
« Adding garbage instructions
HCO
Detoned Next Addr |Detoned Instr
erodw Instr
S cTIo | Next Addr
INSTRUCTION | Instr FETCH DECODE EXECUTE MEMORY
] MEMORY »| STAGE STAGE | —*| STAGE > UNIT WB STAGE
Fetched lnst;;
(-,) . CORE
r universite

CentraleSupélec | PARIS-SACLAY

. [4] A. Palumbo et al. "Built-in Software Obfuscation for Protecting Microprocessors against Hardware Trojan Horses." 2023 IEEE
lrezia—

International Symposium on Defect and Fault Tolerance in VLS| and Nanotechnology Systems (DFT). IEEE, 2023

(-,,> Architectural Countermeasure 2/2 ldea

Preventing the Activation of Software-Exploitable Hardware Trojan Horses

 Add an online Hardware Code Obfuscator (HCO) in a microprocessor
No modified Instructions #ikeg o .

30 » > L 2 » L 4 » » L 2 * B & * L 2 » L 2 L 2 L 2 e
T . . . 29] n n] n
Register scrambling instructions =
27 | | | | | | | | |
- - - - 26 | | | | | | | | | | | |
Xoring/dexoring data instructions: : « = . .
24 | | L |] | |
- . 23 []] | | | | |
% Garbage instructions . a a - - a :
21 |] | |] Gl GO SO VUD GO GO VO DHS> S TNHEO MY
20 n | | | | | | |
19]] B L | L
18] |]] | | |
J 17 00 HeMd Le® B & [| [| | [|
16 [] | | | | |
HCO 15 E | | | | | | | | |
Detoned Next Addr Detoned Instr 14 u]]] u B u
13] | | | | | | |
M 12 - » *» L 2 *» | | L | | | | |
11 [[] []]
10 | | [] [| [|
9 | | | | | |
Next Addr JL 8 n n = = u =
Nevone . 1 Soae N ataae. 1 MOnr [wesTace || 7 . “E e e GHD See Gwe & R
N 6 = = E B = =
Fetched Instr 5]] [| |]
CORE| | " ° " "
3 [| [| | [4 K] B
2 | | | | | | | | | |
1 | | | | | | | | | | | |
Y 0 | | | | | |] []

Cy . .
C S) u n I!e rs Ite \ o " 0 100 200 300 400 500 600 700 800 900 #CI 1000
g Sl / [4] A. Palumbo et al. "Built-in Software Obfuscation for Protecting Microprocessors against Hardware Trojan Horses." 2023 IEEE

&zu’a._— International Symposium on Defect and Fault Tolerance in VLS| and Nanotechnology Systems (DFT). IEEE, 2023

c-,,> Architectural Countermeasure 2/2 ldea

Preventing the Activation of Software-Exploitable Hardware Trojan Horses

 Add an online Hardware Code Obfuscator (HCO) in a microprocessor
» Register scrambling instructions

» Xoring/dexoring data instructions Avg clk Avg clk
« Garbage instructions Program (unprotected) | (Protected) V& Overhead
RSort 21,238 48,284 127%
QSort 247,620 428,518 73%
1 Blowfish 1,031,302 1,504,890 46%
HCO Median 13,722 19,256 40%
B ’ j‘mm Coremark 686,700 1,523,565 121%
L e J L , RC4 51,582 98,153 90%

CORE|

&)

Cry X
P université § =4
e ‘/ [4] A. Palumbo et al. "Built-in Software Obfuscation for Protecting Microprocessors against Hardware Trojan Horses." 2023 IEEE
susar,

&Z’Z&Ia.-—- International Symposium on Defect and Fault Tolerance in VLS| and Nanotechnology Systems (DFT). IEEE, 2023

c-,,> Architectural Countermeasure 2/2 ldea

Preventing the Activation of Software-Exploitable Hardware Trojan Horses

 Add an online Hardware Code Obfuscator (HCO) in a microprocessor

- Register scrambling instructions Unprotected Protected

. | | ~~ Program R S X| R S X
« Xoring/dexoring data instructions FSort 750 0076 0% | 100% 0016 90%
» Garbage instructions 0Sort 50% 0061 0% | 100% 0.009 98%

Blowfish | 66% 0.070 0% | 100% 0.009 68%
Median 47% 0055 0% | 100% 0.008 98%

| Coremark | 94% 0052 0% | 100% 0.008 98%
Heo | RC4 56% 0.078 0% | 100% 0.014 98%
B W Avg 66% 0.065 0% 100% 0.010 92%
L JL | « R - Registers written at least once
Vleony” [FiE || S Ty T e S - Standard Deviation of Registers write operations
« X => Time of the data encrypted in registers

&)

@ ° o
| 9 université AN "¢
e ;é [4] A. Palumbo et al. "Built-in Software Obfuscation for Protecting Microprocessors against Hardware Trojan Horses." 2023 IEEE

&Z’Z&Ia.—-— International Symposium on Defect and Fault Tolerance in VLS| and Nanotechnology Systems (DFT). IEEE, 2023

¢ Hardware Vulnerabilities (again)

Introduction

« Hardware Trojan Horses
 Reverse Engineering
* |IP Piracy

* IP cloning

« Side-Channel Attacks

 Microarchitectural SCAs

* Physical Attacks

(v) o
Y universite

CentraleSupélec | PARIS-SACLAY

lreeia—

Counterfeiting

« Overproduction

+ |C cloning

Backdoors

« Circuit modifications leaking secrets

Tampering

FPGA bitstream modifications

C-,,> Side-Channel Attacks

Background

« What is a Side-Channel Attack?

« Exploitation (unintended) for information leakage of computing devices or implementations

to infer sensitive information

* Microarchitectural Side-Channel Attacks don’t require to have physical access to

the attacked system

« What a Side-Channel Attack can do?
* Leak information

* Inject a Fault

&)

% .. '
université \ Ef
CentraleSupélec | PARIS-SACLAY
4 e @
lreeia— / AN
S BUSHI Y,

Cen

tr

Cy

aleSupéle

(e

[]
université \ 4
{63 PARIS-SACLAY
2 p j :

Cy A Simple Game to Understand SCA

Background

1. You put 28 in one of the pots and 10 in the other

2. Multiply the contents of the red pot by 7 and the contents of the blu pot by 10

[X X 10 =

3. Add the two results

Is the sum odd or even?

. 9

Cen

tr

Cy

aleSupél

(e

[]
université \ 4
ec PARIS-SACLAY
2 p j :

Cy A Simple Game to Understand SCA

Background

1. You put B8 in one of the pots and @@ in the other

2. Multiply the contents of the red pot by 7 and the contents of the blu pot by 10

[X X 10 = 296

3. Add the two results

The sum is even

. 9

Cen

tr

Cy

aleSupél

(e

[]
université \ 4
ec PARIS-SACLAY
2 p j :

Cy A Simple Game to Understand SCA

Background

1. You put 28 in one of the pots and [l in the other

2. Multiply the contents of the red pot by 7 and the contents of the blu pot by 10

[X X 10 = 350

3. Add the two results

The sum is even too

. 9

Cn Is This Really a Game?

Background

« Is the answer enough to reveal what’s in each pot?

7x QO + W 10350 7x T + W~ 10- 206

In both cases, we have even numbers...
However, just by monitoring the time it takes to answer, we can discover where each amount is

(the mental calculation leading to 296 is a bit more complicated than the one leading to 350)

TIMING ATTACK!

Cy . %
université § g
CentraleSupélec | PARIS-SACLAY
6"2, 7 f o @
W - 5“5“: +

Cn Flush + Reload Attack(@‘)

How can an attacker know if someone is using a particular line of cache?

« Attack iteration
 Phase 1. The monitored memory line is flushed from the cache
 Phase 2: The attacker waits to allow the victim to access that memory line

 Phase 3: The spy reloads the memory line, measuring the time to load it

If during the wait phase the victim accesses the memory line, the line will be available in

the cache and the reload operation will take a short time.

If, on the other hand, the victim has not accessed the memory line, the line will need to

(9) .
Y universite

CentraleSupélec | PARIS-SACLAY

lreeia—

be brought from the memory and the reload will take longer

C-,,> CPU: The Basic Idea

Background

Instruction
Memory

Instruction Fetch
Instruction Decode

Program
Counter

r'

Instruction Execute

Register
File

&)

% 0. '
université § Ef
CentraleSupélec | PARIS-SACLAY
=

&’2/26’&.-—- /;;.lﬁii\.

-

r'

A 4

Data
Memory

c-,,> CPU: The Basic Idea

Background

Instruction
Memory

a

Program
Counter

Instruction Fetch

(‘/) .
Y universite

CentraleSupélec | PARIS-SACLAY

lreeia—

&)

N el

\§=
%

K 5U5H£\.

7'y

Instr

Instruction Decode

Instruction Execute

Register
File

V'Y

) 4

Data
Memory

c-,,> CPU: The Basic Idea

Background

Instruction
Memory

a

Program
Counter

(‘/) .
Y universite

CentraleSupélec | PARIS-SACLAY

lreeia—

&)

N el

\§=
%

K 5U5H£\.

7'y

Instruction Fetch

Instruction Decode

Instr

Instruction Execute

Register
File

V'Y

) 4

Data
Memory

(-,,> CPU: The Basic Idea

Background

Instruction | Register
Memory File

A 4
A
V

a

Instruction Fetch
Instruction Decode
Instruction Execute

Program Data

<
-

Counter Memory

Instr

While the instruction is in one stage, other stages are idle. Need to pipeline instructions
) (? L université \% ! to increase throughput

4
lreeia— ’g:.lsuf\. @

-

A 4

r'

¢ CPU: Pipelined Architecture

Background

Instruction

Memory

Program

Instruction Fetch
Instruction Decode
Instruction Execute

Register
File

r'

Counter

<
«

A 4

Data
Memory

Throughput improved, but what about branches instructions?

r

CentraleSupélec | PARIS-SACLAY

& université ¥’ Jump addresses are calculated in IE stage, which instructions

lreeia—

are loaded in ID and IF stage?

C» Managing Branches

Background

« Stall the pipeline

* Do not put anything in IF and ID and wait for the IE to determine what the next

instruction to be fetched (poor performances)

« Branch prediction

» Use hardware blocks to “learn” from code which branches are most likely to be taken to

Increase the rate of correct predictions

&)

(‘/.) o n
université \ E’
CentraleSupélec | PARIS-SACLAY
4 e
lreeia— / A @
S BUSHI Y,

Cry Speculative Execution

Background

« Branch prediction uses hardware blocks to “learn” from code which branches are

most likely to be taken to increase the rate of correct predictions

« Speculating on what is going to be the next instruction to be executed

But what happens if the prediction Is
wrong?

(9) .
Y universite

CentraleSupélec | PARIS-SACLAY

lreeia—

¢ Handling Mispredictions

Background

« The CPU saves his state to be able to roll back if a misprediction occurs

» Results of transient instructions are not committed to memory or registers until the CPU

knows that the prediction is correct

But what if a transient instruction reads data from RAM?

Data is fetched from RAM and copied inside the cache. The CPU will abort the
execution due to misprediction and will roll back its state.

Its state, not the cache! Transient instructions may leave footprints even
after CPU roll back

SPECTRE ATTACK]! s
&

(v) .
Y universite

CentraleSupélec | PARIS-SACLAY

lreeia—

¢ CPU: Pipelined Architecture (again)

Background

Instruction

Memory

Program

Instruction Fetch
Instruction Decode
Instruction Execute

Register
File

Counter

&)

% 0. '
université § E’
CentraleSupélec | PARIS-SACLAY
=

-

7'y

What if Instr #2 depends on Instr #1 result?

>

Data
Memory

¢y

CentraleSupélec

c-,,> Read After Write

What about if Instr #2 depends on the results of Instr #1?

Instr #1: ldw $r1, 0x67 // load in $r1 the content of 0x67
Instr #2: add $r2, $r1 // add to $r2 $r1

When Instr #1 is writing the result of execution in the register file, Instr #2 is in the

execute stage
It may take the old value of $r1

This may be solved by waiting for the writeback of Instr #1.:

READ AFTER WRITE: May be a problem?

université \ 4

PARIS-SACLAY

c-,,> Intentional Read After Write

May RAW be a problem?

 The attacker tries to guess x1 value,

1| 11 x1, %protected_addr #load protected_addr in x1

2 11 x2, %accessible_addr #load accessible_addr in x2]] . .

3| addi x2, x2, %test_value #add test_value to x2 by Iteratlve|y mcreasmg X2;

4l sw x3, 0(x2) #store x3 in the address pointed by x2

s|Ilw x4, 0(x1) #load in x4 from the address pointed by x1 . .

6l lw x5, 0(x4) #load in x5 from the address pointed by x4 « x1 IS not aCCeSS|b|e by the attaCker

 Instr #4 is the first instruction of the intentional RAW:;
* Instr #5 use the protected data in x1 as memory address;
* |nstr #6 is the second instruction of the intentional RAW.

If the address x2 and the address x4 have the same value, the pipeline will stall
If x2 and x4 have different values the execution will be faster

A e \gf ORCHESTRATION ATTACK!

« DRAM technology has contiguous cells electrically interact between themselves causing a

c-,,> RowHammer

A Side-Channel injection attack

i = &

mov (x1), %x0 #read from address pointed by x1

mov (x2), %x3 #read from address pointed by x2
cflush (x1) #flushing x1

cflush (x2) #flushing x2

charge leak (x1 and x2 in different memory rows, but in the same bank)

» This unintended charge transfer may cause an unwanted change in the content of memory rows

that are near the accessed row

By iteratively accessing and flushing (hammering) memory locations, an attacker will be able to

Cy

[]
universite

CentraleSupélec | PARIS-SACLAY

rd

(e

rd

za—

. 9

%

flip the content of the adjacent cell.

ROWHAMMER ATTACK! &

Cz> Architectural Countermeasure Approach (again)

Side Channel Attacks & Microarchitectural Vulnerabilities

 Add an online checker to analyze and detect potential malicious software running

* The programmability is useful to specify what attacks we want to detect

PROGRAMMING DATA

[\ HARDWARE
l/ SECURITY | — WARNING >

MODULE / (/&

Cen

tr

Cy

aleSupélec

(o

[]
universite
PARIS-SACLAY

rd

za—

. 9

%

MAIN
MEMORY

FETCH
STAGE

DECODE
STAGE

EXECUTION
STAGE

MEMORY

UNIT

WB STAGE

Cz> Architectural Countermeasure 1/2 — Hash-based

Side Channel Attacks & Microarchitectural Vulnerabilities — Workflow

p—————-| Flush CMS Counters

]
E 5 i
| 4 | Counter - :
[Instruction 3 E i _;—| "
i ! {] i
: : Timout Limit : :
opcode i : ! i Add Fetched
H ~ Threshold | | g
| | ' pummp-| [Nstruction’s
1 2 : ! | Signature to CMS
" 1 I —-{ Opoode [! |
I i b I ! E
i he [1 . + ! i : !
' | | : : : No
t h2 1 Grar g |] | S]
™ i :
: : 1 ¥ 1y !
"R i =7 Checker!
T no Ll]
T =i ot
1 —— e e - —————— [}]
'''''' Lol J
H ! [}
Sy =
(1) : Hash Logic - ;
(2) : Memories 7
(3) : Checking Module Exceedence? =
. Programmable Attack Model Description Module 7
Cy W

P université § 4
g Sl ;é [5] K. Artkan, A. Palumbo et al., "Processor Security: Detecting Microarchitectural Attacks via Count-Min Sketches," in IEEE

&Z’Z&Ia.—-— Transactions on Very Large Scale Integration (VLSI) Systems, vol. 30, no. 7, pp. 938-951, July 2022.

Cz> Architectural Countermeasure 1/2 — Hash-based

Side Channel Attacks & Microarchitectural Vulnerabilities — Workflow

p—————-| Flush CMS Counters

]
E 5 i
| 4 | Counter - :
[Instruction 3 E i _;—| "
i ! {] i
: : Timout Limit : :
opcode i : ! i Add Fetched
H ~ Threshold | | g
| | ' pummp-| [Nstruction’s
1 2 : ! | Signature to CMS
" 1 I —-{ Opoode [! |
I i b I ! E
i he [1 . + ! i : !
' | | : : : No
t h2 1 Grar g |] | S]
™ i :
: : 1 ¥ 1y !
"R i =7 Checker!
T no Ll]
T =i ot
1 —— e e - —————— [}]
'''''' Lol J
H ! [}
Sy =
(1) : Hash Logic - ;
(2) : Memories 7
(3) : Checking Module Exceedence? =
. Programmable Attack Model Description Module 7
Cy W

P université § 4
g Sl ;é [5] K. Artkan, A. Palumbo et al., "Processor Security: Detecting Microarchitectural Attacks via Count-Min Sketches," in IEEE

&Z’Z&Ia.—-— Transactions on Very Large Scale Integration (VLSI) Systems, vol. 30, no. 7, pp. 938-951, July 2022.

(-,9 Architectural Countermeasure 1/2 — Hash-based

Side Channel Attacks & Microarchitectural Vulnerabilities — Workflow

PROGRAMMING DATA
@ P'{*gfm&“ﬂ:ﬁiﬁ* (From AXI Interface)
\\ /,
SECURITY >
NSTRUCTION I CHECKER
\ ATTACK MODEL
\ DESCRIPTION

MODULE

INSTRUCTION .| FETCH DECODE EXECUTE MEMORY STAGE

MEMORY STAGE | | STAGE | °| STAGE | *] UNT [7]
UPDATE / ESTIMATE TIMER
CORE TRIGGER
ATTACK MODELS
RESET .
RESET
CMSM FVAL | CHECKING
MODULE
F_REQ
® INSTRUCTION
O.) O % N "’ 4\
universite 4

e /% [5] K. Arikan, A. Palumbo et al., "Processor Security: Detecting Microarchitectural Attacks via Count-Min Sketches," in IEEE

h,/&&’a.-- Transactions on Very Large Scale Integration (VLSI) Systems, vol. 30, no. 7, pp. 938-951, July 2022.

(-,9 Architectural Countermeasure 1/2 — Hash-based

flow

Side Channel Attacks & Microarchitectural Vulnerabilities — Work

PROGRAMMING DATA
7 (From AXI Interface)

SECURITY
NSTRUCTION CHECKER
INSTRUCTION o FETCH DECODE EXECUTE MEMORY
MEMORY STAGE STAGE STAGE UNIT W8 STAGE
CORE
ATTACK MODEL
PROGRAMMING DATA SOURCE SOURCE FREQ
(From AXI Interface) ~ OPCODES DESTREG “gpq REG2 THRESHOLD
ATTACK MODEL
TIMER TIMEOUT PATTERN DATA < %
(To the Checking module)

(From AXI Interface)

ATTACK MODEL
DESCRIPTION
MODULE

/

CMSM

TIMER

TRIGGER]|

ATTACK MODELS

RESET

_ RESET
F_VAL CHECKING
MODULE

« F.REQ

INSTRUCTION '

[5] K. Arikan, A. Palumbo et al., "Processor Security: Detecting Microarchitectural Attacks via Count-
Min Sketches," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 30, no. @

7, pp. 938-951, July 2022.

c"-) Architectural Countermeasure 1/2 — Hash-based

PROGRAMMING DATA
> (From AXI Interface)

SECURITY N
NSTRUCTION CHECKER L
INSTRUCTION .| FETCH DECODE EXECUTE MEMORY
MEMORY STAGE STAGE STAGE UNIT W8 STAGE
CORE
TRIGGER

ATTACK MODELS

Side Channel Attacks & Microarchitectural Vulnerabilities — Workflow

PROGRAMMING DATA
(From AXI Interface)

F_VAL

]

A 4

>
P

REQ INSTR

A

FREQUENCY
ANALYSIS
MODULE

-

PATTERN
MATCHING
MODULE

&

RESET

INSTRUCTION

OPCODES

DEST REG

SRC REG 1

SRC REG 2

ACTIVITY MONITOR MODULE

S)

ATTACK MODEL
DESCRIPTION
MODULE
UPDATE / ESTIMATE —
TRIGGER
ATTACK MODELS
RESET
RESET

&

F_VAL CHECKING

Ao MODULE

F_REQ

INSTRUCTION '

Min Sketches," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 30, no.

'kan, A. Palumbo et al., "Processor Security: Detecting Microarchitectural Attacks via Count- @

7, pp. 938-951, July 2022.

(-,9 Architectural Countermeasure 1/2 — Hash-based

Side Channel Attacks & Microarchitectural Vulnerabilities — Workflow

PROGRAMMING DATA
(From AXI Interface)

SECURITY
NSTRUCTION CHECKER
INSTRUCTION o FETCH DECODE EXECUTE MEMORY
MEMORY STAGE STAGE STAGE UNIT W8 STAGE
CORE
REQUESTED
INSTRUCTION
UPDATE
RESET) S g o /
: 1 : 2. . . “m . ESTIMATE
UPDATE | ¢ : : ; :
molgw i L
- A4 s . p
MR 2 - :
> hy &> : : —>
Y
\ 3 T : .
. g 8 s : : CMS I3
: e 3 Analyze F_val
INSTRUCTION : : : : -
INSTRUCTION : z P
MEMORY : R
hy > b
RESET

Ax

PROGRAMMING DATA
(From AXI Interface)

ATTACK MODEL
DESCRIPTION
MODULE
UPDATE / ESTIMATE ——
TRIGGER
ATTACK MODELS
RESET ;
v
RESET
F_VAL CHECKING
Gl MODULE R
F_REQ

INSTRUCTION '

[5] K. Arikan, A. Palumbo et al., "Processor Security: Detecting Microarchitectural Attacks via
Count-Min Sketches," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, @
vol. 30, no. 7, pp. 938-951, July 2022.

(-,9 Architectural Countermeasure 1/2 — Hash-based

Hardware Trojans Interfering with Fetching Instruction Activity

« FPGA Emulation: Resources usage compared with RISC-V Out Of Order RSD core

#Checker configuration || #LUTs #LUTRAMs #FFs #BRAMs Power Consumption || Working Frequency
0 18334 4512 10885 17 0.926 W 57 MHz
1-32 18980 (+3.52%) 4520 (+0.18%) 11518 (+5.82%) 17 0.960 W (+3.67%) 57 MHz
1-64 18981 (+3.53%) 4520 (+0.18%) 11518 (+5.82%) 17 0.960 W (+3.67%) 57 MHz
1-128 18975 (+3.50%) 4512 11510 (+5.74%) 17.5 (+2.94%) 0.960 W (+3.67%) 57 MHz
2-32 19024 (+3.76%) 4528 (+0.35%) 11535 (+5.97%) 17 0.961 W (+3.78%) 57 MHz
2-64 19034 (+3.82%) 4528 (+0.35%) 11535 (+5.97%) 17 0.961 W (+3.78%) 57 MHz
2-128 19024 (+3.76%) 4512 11519 (+5.82%) 18 (+5.88%) 0.964 W (+4.10%) 57 MHz
3-32 19058 (+3.95%) 4536 (+0.53%) 11552 (+6.13%) 17 0.962 W (+3.89%) 57 MHz
3-64 19063 (+3.98%) 4536 (+0.53%) 11552 (+6.13%) 17 0.962 W (+3.89%) 57 MHz
3-128 19049 (+3.90%) 4512 11528 (+5.91%) 18.5 (+8.82%) 0.965 W (+4.21%) 57 MHz
4-32 19082 (+4.08%) 4544 (+0.71%) 11569 (+6.28%) 17 0.962 W (+3.89%) 57 MHz
4-64 19092 (+4.13%) 4544 (+0.71%) 11569 (+6.28%) 17 0.962 W (+3.89%) 57 MHz
4-128 19066 (+3.99%) 4512 11537 (+5.99%) 19 (+11.76%) 0.967 W (+4.43%) 57 MHz
5-32 19114 (+4.25%) 4552 (+0.89%) 11586 (+6.44%) 17 0.963 W (+4.00%) 57 MHz
5-64 19124 (+4.31%) 4552 (+0.89%) 11586 (+6.44%) 17 0.963 W (+4.00%) 57 MHz
5-128 19090 (+4.12%) 4512 11546 (+6.07%) 19.5 (+14.71%) || 0.969 W (+4.64%) 57 MHz
6-32 19198 (+4.71%) 4566 (+1.20%) 11591 (+6.49%) 17 0.965 W (+4.21%) 57 MHz
6-64 19208 (+4.77%) 4566 (+1.20%) 11591 (+6.49%) 17 0.965 W (+4.21%) 57 MHz
6-128 19116 (+4.27%) 4512 11555 (+6.16%) 20 (+17.65%) 0971 W (+4.86%) 57 MHz

s o o)
D universiteé =4
CentraleSupélec | PARIS-SACLAY
-~y /&
W - 5“%: +

[5] K. Arikan, A. Palumbo et al., "Processor Security: Detecting Microarchitectural Attacks via Count-Min Sketches," in IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 30, no. 7, pp. 938-951, July 2022.

(-,9 Architectural Countermeasure 1/2 — Hash-based

Hardware Trojans Interfering with Fetching Instruction Activity

« Malicious Codes, three version each = 100% Accuracy, No False Negative

_ Attack Instr. Loads | Stores | Branches | Jumps
 QOrchestration OrcV1 143363 || 32345 | 32004 18495 3552
OrcV2 141705 || 33057 | 36000 17010 3272

OrcV3 141537 || 33905 | 39723 15894 3052

e Spectre SpectreV 1 139454 72 | 46213 46195 08
P @ ‘f SpectreV2 139452 72 | 46286 46196 90
SpectreV3 139195 80 | 46127 46075 100

. RowH RowHammerV1 126933 || 42962 | 42962 21481 3
owRammer RowHammerV2 || 128565 || 42838 | 42838 21419 3
RowHammerV3 128193 42714 | 42714 21357 3

Flush+ReloadV'1 283673 39941 58991 98870 6711

* Fulsh+Reload Flush+ReloadV2 || 283732 || 39943 | 58993 98896 | 6711
— Flush+ReloadV3 || 285365 || 39944 | 58994 98875 6711

&)

C’/.) .o
universite

\ 4
e [5] K. Arikan, A. Palumbo et al., "Processor Security: Detecting Microarchitectural Attacks via Count-Min Sketches," in IEEE

g “ s Transactions on Very Large Scale Integration (VLSI) Systems, vol. 30, no. 7, pp. 938-951, July 2022.
lrzioa— AN ry Larg gration (VLSI) Sy pp y

(-,9 Architectural Countermeasure 1/2 — Hash-based

Hardware Trojans Interfering with Fetching Instruction Activity

« Malicious Codes, three version each = 100% Accuracy, No False Negative

k=1
. k=1
—_ -rsort
° FP <e k I rsort 091 N coremark
091 I coremark [Ctowers
[Ctowers >08 I median
208[I median 3
3 T 07
8071 <)
o o 0.6
06 2
= @ 05
: 0.5 ke
041) g 0.4 k=2
@ i
(]
03 o &
o2 é 0.2
< : =
0.2 s k=3
0.1 L
0.1 K7 I k=4
0 = = : : : 0 ‘ ‘ I I
DN g® A e o o B o o
) DN D oD N D oD N gD oD AT AT A . A (A ¥ S R ¥
. (k, m) W ATTANT @ @ @ 0T e o N Q I PO O [CR T\
o #Memories, #data memory bit Security Checker Configuration Security Checker Configuration

Fig. 11. Average False Positive Probability (F'P,) when attacking several Fig. 12. Average False quitive Probability (F"Pp) when attacking several
configurations of the SC with the Orchestration Attack g, configurations of the SC with the Spectre Attack ﬁ ‘{;
@

C’/) .
“ universite

CentraleSupélec | PARIS-SACLAY

. [5] K. Artkan, A. Palumbo et al., "Processor Security: Detecting Microarchitectural Attacks via Count-Min Sketches," in IEEE
lrezia—

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 30, no. 7, pp. 938-951, July 2022.

(-,9 Architectural Countermeasure 1/2 — Hash-based

Hardware Trojans Interfering with Fetching Instruction Activity

« Malicious Codes, three version each = 100% Accuracy, No False Negative

_k 1E k=1
.
FP<e I <or
0.9 [N coremark
[Ttowers
2 081 I median
=
Bo7f
[<]
O 0.6+
o
=
5 05+
o
(o
® 04] k=2
©
e
(o)
S
<C
Il k=3
k=4
= —all

.« (k, m): 2

) ML)
a2 A, A (55”2 (2"‘6

N gD D N
\\,\ a7 @& @

Security Checker Configuration

A o
. . Ay
* #Memories, #data memory bit

C’/) .
“ universite

CentraleSupélec | PARIS-SACLAY

lreeia—

Fig. 13. Average False Positive Probability (F'FPp) when attacking several

configurations of the SC with the Rowhammer Attack g9’

k=1

e o
N @
T

o
o

o
~

Avg. False Positive Probability
(=] o
w [6,]

o
o

B
2.0

N

I rsort
I coremark
[towers
I median

O\

v

I k=4

rg,q/\ Q)bc\ rL%\ rb'?z\ Q)b«\ A Q;L\
@ @ @ 0 08 N

Security Checker Configuration

Fig. 14. Average False Positive Probability (F'Pp) when attacking several
configurations of the SC with the Flush+Reload Attack

[5] K. Artkan, A. Palumbo et al., "Processor Security: Detecting Microarchitectural Attacks via Count-Min Sketches," in IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 30, no. 7, pp. 938-951, July 2022.

c-,.> Architectural Countermeasure 2/2 Idea — ML-based

Side Channel Attacks & Microarchitectural Vulnerabilities — Workflow

1. Run the malicious software(s) on the CPU. Target ISAis RISC-V

« Features extracted via tools (gemb, verilator) or FPGA emulation:

» Performance Counters Attack Run
» Computation Time Fealures

Temperature Traces i

Features
Selection

L 4

Power Consumption

ML Models Features
[] I
> Treaning &
2. Design the HSM architecture based on the best ML algo e)
— Y
Best Model
(O :
“ université
CentraleSupélec | PARIS-SACLAY] _) _]]] Hardware_ Hardware
- . [6] M.lamundo, "A machine learning-based security architecture to detect microarchitectural side- | Implementation > Security Module @
&z’ua._- channel attacks in microprocessors ", Master Thesis, Politecnico di Milano (2021) A

Cy

Cz> Architectural Countermeasure 2/2 Idea — ML-based

Side Channel Attacks & Microarchitectural Vulnerabilities — Workflow

1. Run the malicious software(s) on the CPU. Target ISAis RISC-V

« Features extracted via tools (gemb5, verilator) or FPGA emulation:

« Performance Counters

[]
universite

CentraleSupélec | PARIS-SACLAY

rd

(e

rd

za—

. 9

%

Computation Time
Temperature Traces

Power Consumption

[6] M.lamundo, "A machine learning-based security architecture to detect
microarchitectural side-channel attacks in microprocessors ", Master Thesis,
Politecnico di Milano (2021)

Attack Run

Features

B

Features

ML M

odels

L 4

Selection

Features

i

Treaning &

Evaluating
——

Best Model

Hardware Hardware

Implementation Security Module
| —
A

c-,.> Architectural Countermeasure 2/2 Idea — ML-based

Side Channel Attacks & Microarchitectural Vulnerabilities — Workflow

1. Run the malicious software(s) on the CPU. Target ISAis RISC-V

« Features extracted via tools (gemb, verilator) or FPGA emulation:

» Performance Counters Attack Run
--_._._a—r‘_'_""‘
« Computation Time %ﬁ\‘

i

 Temperature Traces

Features
Selection

L 4

* Power Consumption

I

ML Models Features
L]

H

Treaning &

2. Design the HSM architecture based on the best ML algo | Braluatig

{

. Best Model
Cy X 2 What if a new attack comes? Just restart! — 71
université § 4
CentraleSupélec | PARIS-SACLAY g Hardware Hardware
- . [6] M.lamundo, "A machine learning-based security architecture to detect microarchitectural side- | Implementation > Security Module @
&z’ua._- channel attacks in microprocessors ", Master Thesis, Politecnico di Milano (2021) A

c"-) Architectural Countermeasure 2/2 Idea — ML-based

Side Channel Attacks & Microarchitectural Vulnerabilities — Workflow

Attack Run

s

Configuration Bus)
(AX] Interface)

Alert Signal Features
Security |
Module

|

™

.\
A

Features
Selection

k

I

ML Models Features

|

.\
A

'1' ‘l' "1' "1' .| Treaning &

HPC reg(HPC reg|HPC reg(HPC reg Evaluating

Core Pipeline Best Model

i

Instruction
Memory

:

.\
A

Hardware Hardware
C'/,) - " i Implementation) Security Module

L]
université § 4 A——
CentraleSupélec | PARIS-SACLAY
- . - [6] M.lamundo, "A machine learning-based security architecture to detect microarchitectural side-channel attacks in microprocessors @
reezia — ./::Jsm . Master Thesis, Politecnico di Milano (2021)

(-,9 Architectural Countermeasure 2/2 Idea — ML-based

Side Channel Attacks & Microarchitectural Vulnerabilities — Workflow

« Hardware Overhead (#LUTs + #FFs):
* 6,75% in x86 Intel Nehalem (stand alone implementation)

L)

Isolation Forest Attack | Dataset TP % TN % FP % FN %
Dataset | Feature 1 Feature 2 Feature 3 Feature 4
_ _ instructions _ AES 63,35% | 35,94% | 0,71% 0%
icache ReadReq | dcache WriteReq | . icache average
AES] issued by Float-]) .
misses total mshrUncacheable . miss latency = Blowfish | 70 ,97% | 28,82% 0,21% 0%
MemWrite = !
()]
hed instruc- Qo
insts committed s?uas ¢) e ru.c dcache WriteReq | iocache tag ac- 7)) Idea 70,8% 28,63% 0,57% 0%
Blowfish b cvel tions skipped in
each cycle accesses cesses
Y execute RSA | 65,94% | 33,7% | 0,36% | 0%
stdev of latency deache WiiteR b b . 0 o 0 .
ri ran incor-
between load is- | icache ReadReq cacne ened aneaes .CO AES 67,5% 31,94% 0,56% 0%
Idea 1 it MSHr mi MSHR un- | rectly predicted c
Sue and T comr TSR cacheable NotTaken s Blowfish | 69,69% | 30,01% | 0,30% 0%
pletion S
s
o N commited < ldea | 67,09% | 32,6% | 0,31% | 0%
insts issued each | instructions . S
RSA X tetched each cvel FloatCvt in- | BTB lookups
cyele crehed eachh eyele | iructions RSA 63,67% | 36,25% | 0,21% 0%

unlver5|te

(J
< 4
CentraleSupélec | PARIS-SACLAY
- =
lrrzia — N

S BUSHI Y,

* RISC-V - ongoing (paper under review @ an IEE Transaction)

[6] M.lamundo, "A machine learning-based security architecture to detect microarchitectural side-channel attacks in microprocessors @
Master Thesis, Politecnico di Milano (2021)

c-,,> Hardware Vulnerabilities

Introduction

 Trojan Horses
 Reverse Engineering
* |IP Piracy
* IP cloning
« Side-Channel Attacks
* Microarchitectural SCAs

* Physical Attacks

(v) o
Y universite

CentraleSupélec | PARIS-SACLAY

lreeia—

Counterfeiting

« Overproduction

+ |C cloning

Backdoors

« Circuit modifications leaking secrets

Tampering

FPGA bitstream modifications

Cry Methodology Countermeasure ldea

Tampering: FPGA Bitstream modifications

 Are FPGAs implementing soft cores, Trojan-free? Machine Learning methodology will
give the answer

Specifications
P&R
Netlist

H;L_ Looking for “high-level features” : Looking for “low-level features”
= | (e.g. PerfCounts, Time comps) rra | (e.g. Temperature, Power)

Configuration

Lay} .| Highdevel | ML
Netlist| | Simulation Model -
A
r - - Classifier
sw HW
Place & Route Training [« Trojan
Bench

Models

Y A 4
) SW
P&R Low-level | | - :
Netlist| | Simulation Classifier Bench Ok / TI'D]aI'I

»:

CentraleSupélec | PARIS-SACLAY

et o o)
D) université § g

[7] A. Palumbo, et al. "Is your FPGA bitstream Hardware Trojan-free? Machine learning can provide an answer", Journal of Systems@

lreia— Architecture, 128, 2022.

Cry Methodology Countermeasure ldea

Tampering: FPGA Bitstream modifications

Feature ID Description

Performance Features (PFs)

Cycles
InstrRet
LSUs
FetchWait

Loads

Stores ngh Level
Jumps
CondBran

Comprlns F t

Comprins eatures
MulWait
DivdWait
Benchmark

Implementation Features (IFs)

LUTs

= .| Low Level

AvgTotPower

e | FEQALUT €S

A Temperature
D universite \ 4

CentraleSupélec | PARIS-SACLAY
-~
» /5

-

Layer

High-Level

Netlist Simulation
Place & SW
Route Bench

P&R
Netlist

Low-Level
Simulation

\ XGBoost Model

J

Training

Cross-Val.

Model
Performance
and Scores

Evaluation

[8] S. Ribes, et al. "Machine Learning-Based Classification of Hardware Trojans in FPGAs Implementing RISC-V Cores», International

Conference on Information Systems Security and Privacy, 1. 717-724, 2024

Cry Methodology Countermeasure ldea

Tampering: FPGA Bitstream modifications

120% T3
Feature ID Description S 5
o o
Performance Features (PFs) = g <
8 Cycles Number of clock cycles to execute the program ~
; InstrRet Number of instructions retired in the program > °
= LSUs Total waiting cycles to access data memory <
8 FetchWait Total waiting cycles before instruction fetch S
LL Loads Number of executed load instructions ZE
—_ Stores Number of executed store instructions 2
G>J Jumps Number of executed jump instructions §
Q CondBran Number of executed conditional branches @
- Comprlns Number of executed compressed instruction 3
e TakCBran Number of taken conditional branches —
O | MulWait Cycles for multiplication operation completion *
T DivdWait Cycles for division operation completion
Benchmark Program under execution (text label)
_ Implementation Features (IFs)
c|>) $ LUTs Final number of LUTs in the design Y > = = b ~ o)
3 S| FFs Final number of FFs in the design E 5 £ n; + % E 2
+= | AvgDynPow Avg. dynamic power consumption [W] © g 2 z o 0 & o
= 8 AvgTotPower Avg. total power consumption [W] = - 2 p & 0 3
3 LL | Timing Worst negative slack (the circuit critical path) [ns] < < a e f'n—:
<’4 Temperature ~ Temperature trend a"_’ o
7] o

7~ universite A\
CentraleSupélec | PARIS-SACLAY

rd

Set of input features

[8] S. Ribes, et al. "Machine Learning-Based Classification of Hardware Trojans in FPGAs Implementing RISC-V Cores», International
Conference on Information Systems Security and Privacy, 1. 717-724, 2024

rd

U —

Cry Methodology Countermeasure ldea

Tampering: FPGA Bitstream modifications

Feature ID Description Timing
Performance Features (PFs) LUTs
8 Cycles Number of clock cycles to execute the program FFs
5 InstrRet Number of instructions retired in the program
= LSUs Total waiting cycles to access data memory AvgTotPow
8 FetchWait Total waiting cycles before instruction fetch Temperature
LL Loads Number of executed load instructions
— Stores Number of executed store instructions " LSUs
g Jumps Number of executed jump instructions g AvgDynPow
(b) CondBran Number of executed conditional branches e
- Comprlns Number of executed compressed instruction L CondBran
e TakCBran Number of taken conditional branches 5 Loads
O | MulWait Cycles for multiplication operation completion E‘
T DivdWait Cycles for division operation completion Cycles
Benchmark Program under execution (text label) Stores
= Implementation Features (IFs) Jumps
> 8 LUTs Final number of LUTs in the design Comprins
EI) ; FFs Final number of FFs in the design
+= | AvgDynPow Avg. dynamic power consumption [W] TakCBran
= 8 AvgTotPower Avg. total power consumption [W] InstrRet
3 LL | Timing Worst negative slack (the circuit critical path) [ns] T T
G Temperature ~ Temperature trend 0 20 40 60 80 100 120 140
y Tuniversite \ 7 Feature importance

CentraleSupélec | PARIS-SACLAY
D : [8] S. Ribes, et al. "Machine Learning-Based Classification of Hardware Trojans in FPGAs Implementing RISC-V Cores», International
&z’ua._— /::,5,,,,', , Conference on Information Systems Security and Privacy, 1: 717-724, 2024

-

(-,9 Microprocessors Vulnerability and Countermeasures

Challenges & Open Problems in the Hardware Security — Further readings

[1] A. Palumbo et al. “A lightweight security checking module to protect microprocessors against hardware trojan horses,”in 2021 IEEE International Symposium on Defect and Fault Tolerance in VLSI

and Nanotechnology Systems (DFT), pp. 1- 6, 2021.
[2] A. Bolat et al. “A microprocessor protection architecture against hardware trojans in memories,”in 2020 15th Design Technology of Integrated Systems in Nanoscale Era (DTIS), pp. 1-6, 2020.

[3] A. Palumbo, et al. ‘lmproving the detection of hardware trojan horses in microprocessors via hamming codes,”in 2023 IEEE International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT), pp. 1-6, 2023.

[4] A. Palumbo, et al. "Built-in Software Obfuscation for Protecting Microprocessors against Hardware Trojan Horses." 2023 IEEE International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT). IEEE, 2023.

[5] K. Arikan, A. Palumbo et al., "Processor Security: Detecting Microarchitectural Attacks via Count-Min Sketches,” in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 30, no. 7,
pp. 938-951, July 2022.

[6] M.lamundo, "A machine learning-based security architecture to detect microarchitectural side-channel attacks in microprocessors ", Master Thesis, Politecnico di Milano (2021)
[71A. Palumbo etal. "Is your FPGA bitstream Hardware Trojan-free? Machine learing can provide an answer", Journal of Systems Architecture, 128, 2022.

[8] S. Ribes, et al. "Machine Learning-Based Classification of Hardware Trojans in FPGAs Implementing RISC-V Cores», International Conference on Information Systems Security and Privacy, 1: 717-
724,2024

[9] L. Cassano et al. "Is RISC-V ready for Space? A Security Perspective”, 2022 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS)

[10] P. R. Nikiema et al. "Towards Dependable RISC-V Cores for Edge Computing Devices", 2023 IEEE 29th International Symposium on On-Line Testing and Robust System Design (IOLTS)

(v) .
Y universite

CentraleSupélec | PARIS-SACLAY

lreeia—

@) ¢
< universite

CentraleSupélec | PARIS-SACLAY
&zu’af— ‘4
Hardware Trojan Horses and Microarchitectural

Side-Channel Attacks: Detection and Mitigation
via Hardware-based Methodologies

Alessandro Palumbo Q&A?

Associate Professor at CentraleSupélec, Paris-Saclay University, Inria SUSHI Team, Rennes Campus

mailto:alessandro.palumbo@inria.fr
https://palessumbo.github.io/

	Section par défaut
	Slide 1
	Slide 2: Hardware Security
	Slide 3: Hardware Security
	Slide 4: Hardware Vulnerabilities
	Slide 5: Hardware Vulnerabilities
	Slide 6: Hardware Trojan Horses
	Slide 7: Hardware Trojan Horses
	Slide 8: Hardware Trojan Horses
	Slide 9: Hardware Trojan Horses: Just Research?
	Slide 10: Hardware Trojan Horses
	Slide 11: Architectural Countermeasure 1/2 Approach
	Slide 12: Architectural Countermeasure 1/2 Idea
	Slide 13: Architectural Countermeasure 1/2 Idea
	Slide 14: Architectural Countermeasure 1/2 Idea
	Slide 15: Architectural Countermeasure 1/2 Idea
	Slide 16: Architectural Countermeasure 1/2 Idea
	Slide 17: Architectural Countermeasure 1/2 Idea
	Slide 18: Architectural Countermeasure 1/2 Idea
	Slide 19: Architectural Countermeasure 1/2 Idea Evolution
	Slide 20: Architectural Countermeasure 1/2 Idea
	Slide 21: Architectural Countermeasure 1/2 Idea
	Slide 22: Architectural Countermeasure 1/2 Idea
	Slide 23: Hardware Trojan Horses: Just Research?
	Slide 24: Architectural Countermeasure 2/2 Idea
	Slide 25: Architectural Countermeasure 2/2 Idea
	Slide 26: Architectural Countermeasure 2/2 Idea
	Slide 27: Architectural Countermeasure 2/2 Idea
	Slide 28: Hardware Vulnerabilities (again)
	Slide 29: Side-Channel Attacks
	Slide 30: A Simple Game to Understand SCA
	Slide 31: A Simple Game to Understand SCA
	Slide 32: A Simple Game to Understand SCA
	Slide 33: Is This Really a Game?
	Slide 34: Flush + Reload Attack
	Slide 35: CPU: The Basic Idea
	Slide 36: CPU: The Basic Idea
	Slide 37: CPU: The Basic Idea
	Slide 38: CPU: The Basic Idea
	Slide 39: CPU: Pipelined Architecture
	Slide 40: Managing Branches
	Slide 41: Speculative Execution
	Slide 42: Handling Mispredictions
	Slide 43: CPU: Pipelined Architecture (again)
	Slide 44: Read After Write
	Slide 45: Intentional Read After Write
	Slide 46: RowHammer
	Slide 47: Architectural Countermeasure Approach (again)
	Slide 48: Architectural Countermeasure 1/2 – Hash-based
	Slide 49: Architectural Countermeasure 1/2 – Hash-based
	Slide 50: Architectural Countermeasure 1/2 – Hash-based
	Slide 51: Architectural Countermeasure 1/2 – Hash-based
	Slide 52: Architectural Countermeasure 1/2 – Hash-based
	Slide 53: Architectural Countermeasure 1/2 – Hash-based
	Slide 54: Architectural Countermeasure 1/2 – Hash-based
	Slide 55: Architectural Countermeasure 1/2 – Hash-based
	Slide 56: Architectural Countermeasure 1/2 – Hash-based
	Slide 57: Architectural Countermeasure 1/2 – Hash-based
	Slide 58: Architectural Countermeasure 2/2 Idea – ML-based
	Slide 59: Architectural Countermeasure 2/2 Idea – ML-based
	Slide 60: Architectural Countermeasure 2/2 Idea – ML-based
	Slide 61: Architectural Countermeasure 2/2 Idea – ML-based
	Slide 62: Architectural Countermeasure 2/2 Idea – ML-based
	Slide 63: Hardware Vulnerabilities
	Slide 64: Methodology Countermeasure Idea
	Slide 65: Methodology Countermeasure Idea
	Slide 66: Methodology Countermeasure Idea
	Slide 67: Methodology Countermeasure Idea
	Slide 68: Microprocessors Vulnerability and Countermeasures
	Slide 69

