N

e\ m
""’" -
N
"

|
o)
£0
ttz
EMRM
7 w.f_lmﬂ
O e B
- n.wwu@
S’
9 L EE
G“bOR.
N.mwmA, O
12 w Uz g
EOSISE
cO= 2
r-l R p
Os 0o I< K=
Qowa® 0
Owous

Agenda

1. Objectives

2. TRNG basics

From transistor noise...
... to RO phase noise
Entropy source

3. OpenTRNG key
components

Emulator
Implementation
Validation tools

@ ECW 2024 | OpenTRNG | PEBAY PEYROULAF.

OpenTRNG objectives

& OpenTRNG Framework_ comprising OPenTRNG is no
reference designs, emulation | aproductandis

i ® not certified
and analysis tools

= Help industrials to develop and validate TRNG in their products

= Access to state-of-the-art entropy sources and tools
= Characterize noise for a given hardware target
= Helping with certification requirements

= Help academics in their research and teaching

= Characterize custom entropy sources
= Use the framework in practical work with students

@ ECW 2024 | OpenTRNG | PEBAY PEYROULA F.

2! TRNG basics

Noises and entropy sources

ECW 2024 | OpenTRNG | PEBAY PEYROULA F.

Cea

From transistor noise...

= Thermal noise: Gaussian “white” noise

= Flicker noise: colored “pink” noise [DSD2022]
= Higher flicker noise for advanced technological nodes

= Flicker is a correlated noise, but
= No correlations in the generated randomness

= Increase the measured entropy Vd
Noise composition in FD-SOI at 28nm 9

Total noise G 1882?
0
5N 1 - 80%
= S 70%
= i« 60%
© g — NN 8 50%
& noise 4 ‘\\ ; g 40%
— \) S 30%
White noise . I 20%

8 1]
s = 0%

5 S = 4 A ML N~NOODO OO0 00000000000 OO0 O O o

= M IO N~NOO O O O O O O O O O

_ N N © 0o © O O O O

frequency (Hz) a4 ® Db~ &

m %quantification ®%thermique %Flicker

@ ECW 2024 | OpenTRNG | PEBAY PEYROULAF.

[DSD22] On the Characterization of Jitter in Ring Oscillators using Allan variance for True
Random Number Generator Applications, L. Benea, M. Carmona, F. Pebay, R. Wacquez

...t0 ring-oscillator phase noise

enable

D %W .

n-elements rinﬂ—oscilla+or‘

c;lc_z'na'l at Prequency Foi/nd

"H /';T /'_\ N\, o

= Basic principle: DFF samples one RO with another

= Digital randomness is the image of the RO differential phase noise
= Immunity to common variations (voltage, temperature...)

aver'aﬁe jitter cumuloted Jitter

oscilator # ___,|D Ql —» / '{
i #
oscilator #2 ‘——"’D osclillator # / } § AN\ / ;

DFF 9 oscilator #21

2 2 // 2 4
ECW 2024 | OpenTRNG | PEBAY PEYROULA F.

ERO Elementary RO based TRNG

= QOscillator #0 frequency is divided by DIV and samples oscillator #1

Oscilator # |
L Jp el —

" osctwtor 50— ov - ©

= Pros
= Simple design
= Available stochastic model
= Few risk of locking

@ ECW 2024 | OpenTRNG | PEBAY PEYROULA F.

/ NSNS /a\

DI\/ =5

oscillator #0

= Cons

= Lack of entropy

= Need long integration time (high clock
division factor)

= Low throughput

MURO Muiti RO based TRNG

= QOscillator #0 frequency is divided by DIV and samples oscillator #1 to 3, results are XORed

o y
| osciator # | — m A A A
e oscillator #3 /——\‘/ \ /[\ m

Oscilator #2 ﬁ D @ 7 oscilator #2 —\Q : W
L Oscillator #] ‘ D Q -J > a oscilotor # 1m -
> _ /T)\
l,of;cmmor *OJ—){-QDN ; oscilator #0O t,\‘ L [\ \ : ot
DV-5
* Pros = Cons
= More entropy = More power consumption
= More throughput at constant entropy = More surface

= Increased risk of locking

@ ECW 2024 | OpenTRNG | PEBAY PEYROULA F = Complex and partially available model

COSO coherent Sampling RO based TRNG

= Oscillator #0 samples oscillator #1

= On sample rising edge
= register its current value
= and reset the counter

= Random bit is output LSB

= Qutput also gives an internal metric
of the entropy source

= Pros

= High throughput (no clock divided)

= Acceptable entropy
= Internal metric for online tests
= Total failure alarm (by design)

@ ECW 2024 | OpenTRNG | PEBAY PEYROULA F.

oscilator # J__, P @

Oscillator #0

oscilator #

oscillator #0

counter (@)

L

A\

dop>0

do>0

]

PR | : \(

= Cons

Requires freq. conditions on both RO
And that’s it ©

3 B OpenTRNG

1. Emulator
2. Implementation
3. Validation tools

@ ECW 2024 | OpenTRNG | PEBAY PEYROULA F.

Emulator: phase noise

Allan variance counter

= Emulates RO with thermal and flicker noises [CHES24] 908~ counter Allan variance FPGA
14000 7 @ counter Allan variance emulator
12000 4 — fit emulator
P"é 10000 -
o B00O -
N a, - N2 ¥
1 RO 2 . RO = i
dN; = N + St~ + |[——- 5lﬂ 2 a0
factoryy factory, 4000 -
2000 4
. . oé EUI{ID EIUI{ID E-UI{ID BU:DD lU{:DI:I lE{:DI:I
= Generates RO time-series accumulation in periods of ROO
= at a given RO frequency TRNGS, L. Bena, M. Garmona, V. Fischer, F. pebay, R, Wacquez

= with thermal and flicker noise figure measured on real hardware

= As instance, generate 10 million periods of an RO at 100MHz on Xilinx Artix 7 (FPGA)

$ python ro.py —size 10e6 —freq 100e6 —al 1.42e-13 —a2 1.15e-25 ro.txt

@ ECW 2024 | OpenTRNG | PEBAY PEYROULAF.

Emulator: Raw Random Number

= With two (or more) emulated RO we are able to P Oscllator #1 |————

= Emulate Raw Random Numbers (RRN) g
= With full timing behaviors (setup, hold...) [Oscllator *0 ov |

$ python ero.py —size 10e6 —freq0 100e6 —freql 100e6 —div 500 ero.txt
$ python muro.py —size 10e6 —freq 100e6 98e6 99e6 101e6 —div 500 muro.txt

thon coso.py —size 10e6 —freq0 167e6 —freql 167e6 coso.txt
$ Py 2 d g Emulated COSO vs. measured

COSO on Xilinx Artix 7 FPGA

©

s
= As instance for the COSO [DTTIS24] 2 %7 Cos0 #2
R £ 200+ COSO #3
| - - 3 3 150 - COSO #4
oscillator # J L/_ _/ __‘/_-\\/c—\‘_ /_\ u COS50 #5
do>0 / | dp<O do>0 m 100 - 1 Emulator
oscilator #0 J _\J___/m E

counter (@) ‘x 2 X 3

400 600 800 1000 1200
Counter values

>
3
C
=]
I

[DTTIS24] OpenTRNG: an open-source initiative for ring-oscillator
based TRNGs, F. Pebay, L. Benea, M. Carmona, R. Wacquez

@ ECW 2024 | OpenTRNG | PEBAY PEYROULAF.

Implementation: supported targets

= On the shelf support g E3
= FPGA: Digilent Xilinx Arty A7 b i Mt e,
= ASIC: FD-SOI 28nm (emulator only) TG LI

A ADIGILENT b 4

Jé
[1
{]
|

|

5QE?IVNET
- EEEE gees8E

= Future ports

= FPGA: other Xilinx devices, Intel,
Microsemi, Lattice

= ASIC: FD-SOI 22FDX

tﬁ [i ﬂ‘lrll

-

= Design is fully portable

@ ECW 2024 | OpenTRNG | PEBAY PEYROULAF.

Implementation: global view

= Direct access to TRNG from PC over USB-UART
= HDL is currently VHDL, but System Verilog port is considered

= Python script read/write in register map
= Set configuration registers

= Get status registers
= Get generated RRN/IRN

A
/

RD/WR. i Reagist e g
UART i il
F SM rMP % 9+G*UG P-,-RN&

w([FIFO lks
RRN

IRN

@ ECW 2024 | OpenTRNG | PEBAY PEYROULA F.

Implementation: TRNG

[----=ssmsss=====SsSSSSSSSSSSSSSSsssssmmssmsce————o——o

= Entropy sources: | — F .
= ERO s = %-__‘ | Maorithmic post-| ") copte.
= MURO | proninen 3 |
= COSO ' ropy sree | —
boce-ec--eemamesmsc=zzzzzssssscososszzzzzzsszssssed Online tests J——>
— Alarms —

Algorithmic post-processing implements VN

Online test and total failure alarm depend on source
Fits with PTG.2 functionality class as defined in AIS 20/31

@ ECW 2024 | OpenTRNG | PEBAY PEYROULA F.

Implementation: automated tooling

= Auto-generated place and route constraints for RO
= Takes as input number of elements and slice parameters
= Deterministic and stable output for each P/R iteration

/7 -

25

B
bt 4.
' 4ok

RO with 20 elements automated
place and route in Xilinx A7

= Automated bloc placement
= Takes as input source type and number of RO

= |solates each RO, avoid crosstalk between
RO domains and other system clocks

RO and sampling blocs physical isolation in Xilinx A7

@ ECW 2024 | OpenTRNG | PEBAY PEYROULA F.

Validation tools: simulation & verification

= Language and simulator agnostic with cocotb (QuestaSim, GHDL...)

= Bit-true simulation and verification with RO and RRN emulators

i RO emulator (Py) %—-—a_gﬂ_é__,, put (HDL) :
bemwss==SESSIIIIIIIICIICIZCICCz===ed ii 74 4EEL > waves
________ l ﬁ EE Entropy i
: i ———4— source T I .’ '
KOemmorq?,) i — | j Bittrue | icd Eardware/sm/test_coso
"""""""""" i e MEVGE
| - restberch kil

.
"

i cocotb (Py)

1
..................................
3k sk 3k 3k 3k sk >k 3k sk sk ok 3k Sk ok 3k >k sk sk sk >k Sk ok ok 3k sk sk >k 3k sk ok sk >k sk sk sk >k sk sk 5k 3k sk sk >k >k sk ok ok >k Sk sk ok >k 3k sk >k >k >k ok ok %k sk k ok

** TEST STATUS SIM TIME (ns) **

g : 3k 3k 3k 3k 3k 3k 3k 3k ok 3k 3k 3k sk >k 3k >k 3k 3k 3k 5k 5k 5k 3k 3k sk 3k 3k 3k 3k 3k 3K 5k 5k 5k 5k 3k 3k sk sk sk %k >k >k 5k 3k 3k 3k 3k 3k >k >k sk %k %k >k 5k 5k 5k %k %k %k k k
0 'j RRN emulator (Py) :;_= ** test_coso.test_total_failure_alarm PASS 10010.00 **
> ! ** test_coso.test_gen_random_100 PASS 63706.73 **

5k 3k oK 3k oK ok K ok 3k oK 3k K ok K ok ok oK ok K ok 3 ok 3k oK ok K ok ok ok oK ok K ok 3 oK 3k oK ok K ok 3k ok 3k oK ok K ok o ok ok oK ok K ok oK kK ok K K

** TESTS=2 PASS=2 FAIL=0 SKIP=0 73716.73 **
5k 3 oK 3k oK ok ok 3k oK 3k K ok K ok ok oK ok K ok 3 ok 3K oK ok K ok o ok ok oK 3k ok 3 oK 3k oK ok K ok 3 ok 3k K ok K ok o ok ok oK ok K ok oK kK ok K K

@ ECW 2024 | OpenTRNG | PEBAY PEYROULAF.

A
Validation tools: noise figure extraction

= COSO helps to extract noise parameters

= Plot Allan variance of measured COSO Variance on measured COSO

output on Xilinx Artix 7 (100MHz)

output
o 10° 1 —— Variance
. - . . . % —— Polynomial fit
Polynomial fit gives amplitudes £]
= al:thermal noise 2
= 10!
= a2: flicker noise £
. = = = . g lD_l_
= Coefficients are injected back in RO JU - il A SR
. 100 101 102 103 104
emulator for target specific accurate N (accumulation)
behavior bocen TANG F. oy, 1 Bonaas . Camnone, B Wasgon

@ ECW 2024 | OpenTRNG | PEBAY PEYROULA F.

a2

Validation tools: randomness KPI

Entropy estimations for ERO measured

- Python Scrlpts pI‘OVIde access to data into Xilinx A7 vs accumulation time
= Entropy estimators =

09 1 —e— H16

= Shannon
= Most Common Value (NIST SP800-90B)

= Markov (NIST SP800-90B) e . - i
= T8 as in AlS 20/31 procedure B)

Autocorrelations for emulated ERO with
different flicker noise amplitude vs time

. Autocorrelation
= Auto-correlations @
= Variable word size and lag

—®— N=100 0=flicker
&= N=100 1*flicker
—®— N=100 10*flicker
—&— N=100 100*flicker
—®— N=100 1000*flicker

@ ECW 2024 | OpenTRNG | PEBAY PEYROULAF. 0 20 a0 60 80 100

Development cycle

OpenTRNG helps in the TRNG
development cycle
= Key benefits
= Validate HDL with emulators
= Validate entropy model

= Measure and extract noise
for your hardware target

= Reduce time-to-product

@ ECW 2024 | OpenTRNG | PEBAY PEYROULA F.

Noise
parameters
extraction

Randomness
KPI

Phase noise
emulator

Digital design
(HDL)

Raw Random
Number emulator

Simulation and
verification (HDL)

Implementation
ASIC/IFPGA

Takeaway message

= Open-source framework for RO
based TRNG

= |ncludes: emulator, implementation
and validation tools

= Helps industrials to develop and
validate TRNG in their products and

academics in their research and N o
Cw e :rm k

https://opentrng.org
= Opened to contributions ©

om
3l

| o github.com/opentrng

. §
= R B g e
n = 4] L ‘l
'.- uﬁ 1 o .Jlg. - ‘nm‘-lI!-l

“-ll.: ';_. '-i' 53

s B

@ ECW 2024 | OpenTRNG | PEBAY PEYROULAF. 'y
[

w = e .

