

F. PEBAY-PEYROULA, L. BENEA, M. CARMONA, R. WACQUEZ

Agenda

1. Objectives

2. TRNG basics

From transistor noise...

... to RO phase noise

Entropy source

3. OpenTRNG key components

Emulator

Implementation

Validation tools

OpenTRNG objectives

Framework comprising reference designs, emulation and analysis tools

- Help industrials to develop and validate TRNG in their products
 - Access to state-of-the-art entropy sources and tools
 - Characterize noise for a given hardware target
 - Helping with certification requirements
- Help academics in their research and teaching
 - Characterize custom entropy sources
 - Use the framework in practical work with students

2 TRNG basics

Noises and entropy sources

From transistor noise...

- Thermal noise: Gaussian "white" noise
- Flicker noise: colored "pink" noise [DSD2022]
 - Higher flicker noise for advanced technological nodes
 - Flicker is a correlated noise, but
 - No correlations in the generated randomness
 - Increase the measured entropy

...to ring-oscillator phase noise

- Basic principle: DFF samples one RO with another
 - Digital randomness is the image of the RO differential phase noise
 - Immunity to common variations (voltage, temperature...)

ERO Elementary RO based TRNG

Oscillator #0 frequency is divided by DIV and samples oscillator #1

Pros

- Simple design
- Available stochastic model
- Few risk of locking

Cons

- Lack of entropy
- Need long integration time (high clock division factor)
- Low throughput

MURO Multi RO based TRNG

Oscillator #0 frequency is divided by DIV and samples oscillator #1 to 3, results are XORed

Pros

- More entropy
- More throughput at constant entropy

Cons

- More power consumption
- More surface
- Increased risk of locking
- Complex and partially available model

COSO Coherent Sampling RO based TRNG

- Oscillator #0 samples oscillator #1
- On sample rising edge
 - register its current value
 - and reset the counter
- Random bit is output LSB
- Output also gives an internal metric of the entropy source

Pros

- High throughput (no clock divided)
- Acceptable entropy
- Internal metric for online tests
- Total failure alarm (by design)

Cons

- Requires freq. conditions on both RO
- And that's it ©

3 OpenTRNG

- 1. Emulator
- 2. Implementation
- 3. Validation tools

Emulator: phase noise

12000

Emulates RO with thermal and flicker noises [CHES24]

$$dN_i = N + \sqrt{\frac{a_1 \cdot N}{factor_{th}}} \cdot \delta i_{th}^{RO} + \sqrt{\frac{a_2 \cdot N^2}{factor_{fl}}} \cdot \delta i_{fl}^{RO}$$

- Generates RO time-series
 - at a given RO frequency
 - with thermal and flicker noise figure measured on real hardware
- As instance, generate 10 million periods of an RO at 100MHz on Xilinx Artix 7 (FPGA)

14000 counter Allan variance emulator fit emulator 12000 10000 8000 6000 4000 2000 8000 2000 4000 6000 10000 accumulation in periods of RO0 [CHES24] Impact of the Flicker Noise on the Ring Oscillator-based

counter Allan variance FPGA

fit FPGA

16000

TRNGs, L. Benea, M. Carmona, V. Fischer, F. Pebay, R. Wacquez

Allan variance counter

\$ python ro.py -size 10e6 -freq 100e6 -a1 1.42e-13 -a2 1.15e-25 ro.txt

Emulator: Raw Random Number

- With two (or more) emulated RO we are able to
 - Emulate Raw Random Numbers (RRN)
 - With full timing behaviors (setup, hold…)

\$ python ero.py -size 10e6 -freq0 100e6 -freq1 100e6 -div 500 ero.txt

\$ python muro.py -size 10e6 -freq 100e6 98e6 99e6 101e6 -div 500 muro.txt

\$ python coso.py -size 10e6 -freq0 167e6 -freq1 167e6 coso.txt

As instance for the COSO [DTTIS24]

[DTTIS24] OpenTRNG: an open-source initiative for ring-oscillator based TRNGs, F. Pebay, L. Benea, M. Carmona, R. Wacquez

Implementation: supported targets

On the shelf support

- FPGA: Digilent Xilinx Arty A7
- ASIC: FD-SOI 28nm (emulator only)

Future ports

- FPGA: other Xilinx devices, Intel, Microsemi, Lattice
- ASIC: FD-SOI 22FDX

Design is fully portable

Implementation: global view

- Direct access to TRNG from PC over USB-UART
- HDL is currently VHDL, but System Verilog port is considered
- Python script read/write in register map
 - Set configuration registers
 - Get status registers
 - Get generated RRN/IRN

Implementation: TRNG

Entropy sources:

- ERO
- MURO
- COSO

- Algorithmic post-processing implements VN
- Online test and total failure alarm depend on source
- Fits with PTG.2 functionality class as defined in AIS 20/31

Implementation: automated tooling

RO with 20 elements automated place and route in Xilinx A7

- Auto-generated place and route constraints for RO
 - Takes as input number of elements and slice parameters
 - Deterministic and stable output for each P/R iteration

- Automated bloc placement
 - Takes as input source type and number of RO
 - Isolates each RO, avoid crosstalk between RO domains and other system clocks

RO and sampling blocs physical isolation in Xilinx A7

Validation tools: simulation & verification

- Language and simulator agnostic with cocotb (QuestaSim, GHDL...)
- Bit-true simulation and verification with RO and RRN emulators

\$ cd hardware/sim/test_coso \$ make

2

- COSO helps to extract noise parameters
- Plot Allan variance of measured COSO output
- Polynomial fit gives amplitudes
 - a1: thermal noise
 - a2: flicker noise
- Coefficients are injected back in RO emulator for target specific accurate behavior

[DTTIS24] OpenTRNG: an open-source initiative for ring-oscillator based TRNGs, F. Pebay, L. Benea, M. Carmona, R. Wacquez

Validation tools: randomness KPI

- Python scripts provide access to
- Entropy estimators
 - Shannon
 - Most Common Value (NIST SP800-90B)
 - Markov (NIST SP800-90B)
 - T8 as in AIS 20/31 procedure B
- Auto-correlations
 - Variable word size and lag

Entropy estimations for ERO measured data into Xilinx A7 vs accumulation time

Autocorrelations for emulated ERO with different flicker noise amplitude vs time

Development cycle

OpenTRNG helps in the TRNG development cycle

Key benefits

- Validate HDL with emulators
- Validate entropy model
- Measure and extract noise for your hardware target
- Reduce time-to-product

Takeaway message

- Open-source framework for RO based TRNG
- Includes: emulator, implementation and validation tools
- Helps industrials to develop and validate TRNG in their products and academics in their research and teaching
- Opened to contributions ©

