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QRNG based on SPAD
Outline

* |ntroduction to QRNG based on SPAD
* Different QRNG approaches:
- Based on photon counting
- Based on the arrival time: single and multi-bit
- Random FF
* QRNGs trend:
- Monolithic SPAD
* Conclusion



Context and motivation
Quantum Random Number Generator
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SPAD-based QRNG
Typical scheme
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"An LED produces incoherent light by spontaneous emission which is essentially a random process. If
operated at sufficiently low power, a LED emits photons which are virtually independent of each other
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SPAD-based QRNG
Single Photon Avalanche Diode (SPAD)

SPAD (biased in Geiger mode) operation
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SPAD-based QRNG
SPAD output
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Quantum Random Number Generator
A prototypical QRNG

. Single photon detector
Superposition of DO =P
‘reflected’ or ‘transmitted’ state 0
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Quantum Random Number Generator
Main parameters

DO Single photon detector
\ 1
////
50%7?
- @ 0
Single photon detector
’ D1
w 1. EFFICIENCY: number of bit per random event (detected ph)
- 2. BIT RATE: number of (random) bit per second
SOURCE of PHOTONS 3. BIAS:  [p1-po|l 2 O

4. ENTROPY: H(X) = — ) pilog(p;)



QRNG based on photon counting
Single SPAD with external laser

Si-MPPC
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QRNG based on Photon Counting

QRNG by MPD
Electronic interface
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QRNG produced by MPD is based on an array of 32x32 SPAD cells connected to a
photon counter. For high counts (1>>10), the Poisson Is ~ a Gaussian distribution

with std equal to vA. Choosing the LSB (parity bit) whitens the distribution. We can
extend to more LSBs always guaranteeing a min entropy ~ 1/2log,(21TA)




QRNG based on Photon Counting
IdQ product

QRNG based on a standard digital camera.
The pixel value i1s dominated by shot noise and
approximates well a Poission distribution

100 Mpixel = 3 bits per pixel - 0.3 up to 3 Gbps
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QRNG based on photon counting
Particular case when N=1
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| QRNG based on photon counting
Fast (Gbps) binary single photon imager
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QRNG based on photon counting
Particular case when N=1 --> Von Neumann filter

Clock
cycles

Laser
pulses

Random
numbers
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not valid

Apply the Von Neumann filter to raw data: the maximum
efficiency n=0.25 is reached at AT=In2 =0.693 representing
the value where probabillity of zeros and ones are equal



QRNG based on photon counting
Performance variation
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* The QRNG efficiency strongly depends on the flux of photons detected by every cell
= Difficult to guarantee a uniform behavior across the array
= May depends on aging or drift of the source of light
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QRNG based on the arrival time
First detected photon

Let's consider a couple of SPAD with same size one close to the other
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QRNG based on the arrival time

First detected photon

Front End
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QRNG based on arrival time
Source of bias: cell behaviour

1.Mismatch between the two SPADSs
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QRNG based on the arrival time
Improved solution

e A circult discards events that are too close In time:
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QRNG based on the arrival time
Time comparison

t, t,

- =  Using a frequency clock (1/T), we measure
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QRNG based on the arrival time
Time comparison
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If T IS the average arrival time of events,

the efficiency of the generator will be
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QRNG based on arrival time
Time comparison (extension)

Multiple ranks random number generation based on the arrival time
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QRNG based on arrival time
Multi-bit generation

A = rate of events
T,, = observation time window

o tbinl
§ — AT,, = average events in Tw
L]
SiS
_ Very low event
Yanl5] rate
Bis17] o @@ (e [ [ [® (el | s
Bis18] 0 oo e 00000000 Time w
Soa080c9d438539838 4
OO OO0 d dd 400 OO0 H -
OO OO0 0O O0CO0O 0O dAd AdA A A d -
P{t <7,N(T,) =1} P{N(x) =1,N(T,) —N(r) =0}

P{N(Ty) = 1} P{N(Ty) = 1}
Ar-e M. e~ MTw=T) (7 - If the flux is so low to ensure up to 1 detection
=T AT e Mw T, per T,, the arrival time is uniformly distributed in T,
w w




QRNG based on arrival time

Multi-bit generation
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Monolithic QRNG
Towards a low cost QRNG

* Integration allows to shrink down the QRNG

dimension and cost .

 Target: implementation of the ‘ Monolith
QRNG in a standard advanced Sc?lﬂ?ic;n IC
technology node Compact

SPAD coupled with
—— Si-LED in CMOS
SPAD array with (under investigation)
custom Si-LED

SPAD array with
an external LED
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Monolithic QRNG
In-silicon source of light

Implementation of a silicon LED:

* Forward emission: peaked at NIRevice description = poor matching with the
detector

* Reverse-avalanche emission: broad range with better matching with detector
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Wavelength (nm) Wavelength (nm) Visible light observed In test
structures and capture through
[Khan15] [Ace20] a microscope




Monolithic QRNG
In-silicon source of light
g | Two arrays of 18x8 cells, each having a couple

of SPADs as detector and a central SPAD as an
emitter of light
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Monolithic QRNG
In-silicon source of light
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Every cell has proper circuit to control the light emission (custom emitter
guenching) and a correlator circuit to exclude dark events for the generation of
random numbers.

Achieved speed is ~ 400 Kbps




QRNG review
Conclusions

» Optical QRNG based on SPAD have shown encouraging results
 Different approaches has been shown with pros and cons

 SPAD-based QRNG can be potentially integrated in a standard state of the art
CMOQOS technology

 SPAD-based QRNG can be implemented in an array to speed-up the
generation (up to 5 Gbps have been demonstrated)

* A bit of effort has to be spent in order to increase the actual TRL of this
technology
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