
Overview of SP 800–90

￼1

John Kelsey
NIST and KU Leuven
November 2024

SP 800-90: Big Picture

Entropy source provides seed
DRBG generates cryptographically strong outputs

Rule: Outputs always come from DRBG

2

SP 800-90: A, B, and C

Three parts:
• 90A: DRBGs (Deterministic Random Bit Generators)
• 90B: Entropy Sources
• 90C: Constructing Random Bit Generators 3

Timetable
SP 900-90A

• First version in 2006
• Multiple revisions since then
• Lots of installed base
• Under revision now

SP 800-90B published 2018

SP 800-90C final draft
• Working through public comments
• Final version out in early 2025

4

90A: DRBGs

5

SP 800-90A: DRBGs

• DRBG algorithms
	 Deterministic—requires entropy source for seed
• Three standard DRBGs
	 Cannot define your own DRNG
• Security strength (128, 192, 256)
	 AIS 20/31 now requires 256 bit security
	 We will still allow lower security strengths

≈

6

DRBGs

CTR-DRBG
• Based on AES block cipher
• Security based on AES key size (128,192,256) + entropy

HMAC-DRBG
• Based on HMAC PRF (SHA2, SHA3)
• Security 128,192,256: based on entropy

Hash-DRBG
• Based on hash fn (SHA2, SHA3)
• Security 128,192,256: based on entropy

7

A DRBG knows how to do three things:

Instantiate(seed, personalization_string)
• Create new DRBG instance, ready to use

Reseed(seed, additional_input)
• Refresh DRBG state to recover from compromise

Generate(length, additional_input)
• Produce random-looking output

8

The optional additional inputs

Personalization string and additional input are optional
• No assumptions made about contents
• May be adversarially chosen
• Must not weaken security of DRBG
• Should improve security when they contain entropy

A module need not use or even support these optional inputs
9

Backtracking resistance and
Enhanced backward secrecy
DRBGs guarantee enhanced backward secrecy between generate calls.

• Expensive “gating” operation
between generate calls

• Enhanced backward secrecy
(AIS20 definition)
provided by all three DRBGs BETWEEN calls

10

Changes to SP 800-90A

11

Entropy sources and randomness sources
Current 90A:
• Instantiate and reseed draw from entropy source

• Fresh entropy required!

• 90C and Next 90A:
• Instantiate and reseed draw from EITHER

• Entropy source
• RBG with equal or greater security strength

12

Instantiation
Current 90A: Instantiating DRBG with s bits of security
• Entropy input (s bits entropy) + nonce
• Nonce MAY be string with s/2 bits entropy

90C and next 90A:
• Randomness input (from entropy source OR RBG)

• Entropy source: 3s/2 bits min-entropy
• RBG: 3s/2 bits output, RBG must be same or higher strength

• No more nonce
13

Problem: long outputs from generate()

• Generate calls currently allow *huge* outputs
• 219 bits

• Potential for side-channel attacks
• Especially for AES CTR-DRBG!

• Backtracking resistance only BETWEEN generate calls
• Compromise state in middle of generate == get all outputs

14

Planned changes

• Require outputs not leave module until generate completes
• Avoid keeping a DRBG state in middle of generate
• This has really been done in modules
• "Generate function SHOULD complete in a short period of time."

• Considering smaller output limits in next 90A revision
• Maybe 2048 bits?
• Can still get many bits, just multiple generate calls

15

The reseed interval

Current limit 248 generate calls

• Artifact from original analysis of DRBGs
• Goal: limit outputs to no more than 264 bits or bytes

• Doesn’t really accomplish any security goal
• Going away

Still considering requiring periodic reseeds in some constructions
(90C)

16

XOF-based DRBG

• Planning to add a DRBG based on any XOF
• Example: Shake256, Ascon-XOF

• XDRBG: Design published in ToSC in 2024
• Comes with security proof
• Designed to work with SP 800-90 and AIS 20/31 requirements
• Got feedback and review on paper from BSI*

* Thanks, Johannes!

17

SP 900-90B: Entropy Sources

18

What is an Entropy Source?
SP 800-90B is about how to build an entropy source.
• Produces bitstrings
• Tells you how much min-entropy they have
• No guarantee on how entropy distributed in output.

19

Components of an Entropy Source
● Noise Source

− Where the entropy comes from
● Health tests

− Verify the noise source is still
working correctly

● Conditioning
− Optional processing of noise

source outputs before output.

Reminder: An entropy source provides bitstrings with known entropy/sample

raw
random
numbers internal

random
numbers

20

Noise Source
• Provides bitstrings with some inherent unpredictability.
• Don't need high entropy/bit
• Do need to know how much entropy* we are getting

• Physical OR non-physical
• Examples:

• ring oscillators
• interrupt timings
• noisy diodes + counting

* Min-entropy, not Shannon entropy! 21

Entropy estimation

• Submitter has to provide entropy estimate and
justification
• Stochastic models not yet required
• Future: required for physical sources

• Automated tests for entropy estimation*
• Relied on too heavily now—should be a sanity check
• Applied to raw bits / raw random numbers

• IID vs non-IID track
• If designer claims source is IID….

* Next version of 90B will require stochastic models for physical noise sources! 22

IID track

• Submitter claims IID source
• Only evaluate as IID if it is claimed

• Submitter provides justification for IID claim

• IID tests try to falsify claim of IID
• Permutation tests
• Chi-square test

23

Deriving a number
IID Case:
• Count most common value in output and construct bound on Pmax.

Non-IID Case:
• Apply many different entropy estimators against sequential dataset.

• Parameter estimation tests (NSA)
• Predictor tests (NIST)
• Longest repeated substring + K-tuple estimate (NIST)

• Take minimum of all estimates.
+ restart tests  another entropy estimate

Final result is minimum of submitter claim and test results
24

Health Testing
Noise sources are fragile

Failures can be invisible
• Conditioning can hide flaws
• Outputs go into DRBGs
• … nobody ever sees them

Failures  security vulnerabilities
• Improperly seeded DRBG
• Predictable keys

Health tests are essential for security—mandatory in SP 800-90B
25

Health Tests: Continuous / Startup / On Demand
Continuous Tests	 	
• Going on all the time behind the scenes
• 90B requirements mostly here

Startup Tests 	 	
• Run at startup
• May just be continuous tests run over many bits

On Demand		
• Run when requested
• May just be rerun of the startup tests

26

Our Continuous Health Tests

• Repetition Count Test – Detect when the source gets “stuck” on one
output for much longer than expected.

• Adaptive Proportion Test – Detect when one value becomes much
more common in output than expected.

• Note that tests:
• Require minimal resources
• Outputs can be used as they are produced
• Allow tunable false-positive rates

Entropy/sample + false positive rate  cutoff values 27

Our tests meet minimum requirement

• This will change in next version of 90B

• Designers should understand their sources much better than we can.

• Should design health tests tuned for source
• How might entropy estimate be wrong?
• What observable effect will each failure have?

• Our tests are intended as a MINIMUM bar
• We want vendors to do better.

28

Vendor-Defined Tests: Requirements

• Submitters need to show that their tests detect the same signals as
ours:
• Detect if a value repeats too often (the source gets stuck).
• Detect if some value becomes much too likely.

• Submitters can show this by:
• Proof or convincing argument
• Statistical simulation

29

Health Tests: Next version of 90B

• Better requirements for health tests

• No more "safe harbor" by using our tests
• We never expected these to be what everyone used

• Base tests on parameters of stochastic model + failure
modes of source

30

Conditioning

Post-process raw bits from
noise source
• Optional
• Improve statistics
• Compress  improve

entropy/bit
• Spread entropy through

bit string
90B does not require entropy source outputs to be high entropy

31

Vetted Conditioning Functions

90B specifies six “vetted” conditioning functions.
• Cryptographic mechanisms based on well-understood primitives
• Large input and output size, large internal width
• CAN claim full entropy under some circumstances
• No need to run entropy estimates on outputs
• Usually no state between calls

Future plan: Have external list of vetted conditioning functions so additions
don't require revising standard!

32

How to get full entropy in 90B

• Noise source with known entropy/symbol
• Vetted conditioning function
• At least n+64 bits min-entropy in  n bits

output

33

Non-Vetted Conditioning

• Anything not on our list
• Generally non-cryptographic
• Require some justification that these don't interact badly with source
• Pretty minimal requirement
• Count on statistical tests to detect problems

Next 90B version:
• Justification based on stochastic model (physical sources)
• Should justify output entropy claim!

34

Entropy accounting

If you are not getting full entropy….

Vetted conditioning function:
• Use output entropy formula

Non-vetted conditioning function:
• Use output entropy formula
• Run tests on conditioned outputs

35

: 𝐎𝐮𝐭𝐩𝐮𝐭_𝐄𝐧𝐭𝐫𝐨𝐩𝐲(𝑛𝑖𝑛, 𝑛𝑜𝑢𝑡, 𝑞, h𝑖𝑛)

1. Let and .

2.
3. +

4. U =

5.
6. Return

*The formula used to generate Output_Entropy() is adapted from the formulas
provided in [RaSt98].

𝑃h𝑖𝑔h = 2−h𝑖𝑛 𝑃𝑙𝑜𝑤 =
(1 − 𝑃h𝑖𝑔h)

2𝑛𝑖𝑛 − 1

𝑛 = min(𝑛𝑜𝑢𝑡, 𝑞) .
𝜓 = 2𝑛𝑖𝑛−𝑛𝑃𝑙𝑜𝑤 𝑃h𝑖𝑔h

2𝑛𝑖𝑛−𝑛 + 2 𝑛(2𝑛𝑖𝑛−𝑛)ln(2)

𝜔 = 𝑈 × 𝑃𝑙𝑜𝑤
−log(max(𝜓, 𝜔))

36

SP 800-90C: Constructions

37

90C: RBG Constructions

• 90A: DRBG
• 90B: Entropy source
• 90C: Random Bit Generator (RBG)

Specifies four RBG constructions
• Different performance/security trade offs

Also specifies other things
• Full entropy requirements
• External conditioning
• Multiple entropy sources

38

RBG Constructions

• RBG1 = externally seeded DRBG 		 	 	
• RBG2 = internally seeded DRBG
• RBG3 = full-entropy RBG
• RBGC = chain or tree of DRBGs originating w/ entropy source 	

Different engineering requirements
Different security and performance traits
Correspond approximately to AIS 20/31 functionality classes

39

• Entropy source + DRBG mechanism
• Internal entropy source

• Doesn’t need persistent state
• MAY support reseed on demand
• MAY reseed automatically “behind the scenes”

• Fixed security strength: {128,192,256}-bits 40

RBG2: Internally Seeded DRBG

RBG2(P)
• Physical entropy source
• DRG.4

RBG2(NP)
• Non-physical entropy source
• (+ DRG.3?)

≈

≈ NTG.1

41

RBG2(P) and RBG2(NP)

RBG3: Full Entropy RBG

• RBG with full-entropy outputs

• Supports ALL security levels
	 IF entropy source working as expected
	 	 Full entropy outputs = perfect security
	 IF entropy source fails
	 	 Fall back to DRBG Mechanism = computational security

• Always based on physical entropy source

42

Full Entropy???

• Each bit of output has (1-2-32) bits min-entropy

• Given 264 output bits, can’t distinguish from ideal random
• Even with unlimited computation

Minimal trust of cryptographic primitives

See NIST-IR 8427 for justification and analysis

43

RBG3-RS

• Start with RBG2 (internally-seeded DRBG)
• With physical entropy source

• Reseed between each output
• s+64 bits entropy in, s bits out

• ≈PTG.3
44

RBG3-RS in detail

DRBG with s bit security strength:

For each s bits required:
• Reseed with s+64 bits entropy
• Generate s bits output

RBG3-RS call generate arbitrary
number of output bits in this way!

45

RBG3-XOR

• Start with a full entropy source
• Outputs indistinguishable from ideal random bits
• n bits of output have n-2-32 bits of min-entropy

• Seed DRBG mechanism
• Outputs = DRBG output XOR Full Entropy Source output
• Can also get normal DRBG outputs

• Just generate from DRBG mechanism

DRG.4 (physical entropy source + DRBG)≈
46

RBG1: Externally Seeded DRBG

47

• Instantiated once from outside module
	 MUST be seeded from RBG2(P) or RBG3
	 Physically secure channel needed
	 RBG2 at least as high security strength as RBG1
Note: These are all documentation requirements—can’t be tested!

RBG1 (cont’d)
Instantiates once
Never reseeds

• No onboard entropy source
• Requires persistent memory

• …to keep constantly-evolving DRBG state

• Memory must not reveal previous states!
• Cannot recover from a compromise
• Fixed security strength: 128, 192, 256.

DRG.3≈

48

RBG1 Sub-DRBGs
• RBG1 construction can instantiate

one layer of subordinate DRBGs
(Sub-DRBG)
• Sub-DRBGs reside in the same

security boundary as the RBG1
source
• Use the same DRBG mechanism

• Sub-DRBG output shall not provide
input for the RBG1 source

49

RBGC

• Each DRBG:
• Has exactly one seed source
• May seed multiple DRBGs
• May provide bits to applications
• Cannot seed a DRBG with higher security than its own

• Initial source: Ultimate root of trust
• RBG2(P)
• RBG2(NP)
• RBG3
• Full entropy source

DRT.1≈

50

Loops are not allowed

Example: RBGC with loop

• No entropy, no security

• No DRBG may be part of its own
seed source!

This leads to somewhat complicated rules and issues

51

NIST/BSI Collaboration

52

NIST/BSI Collaboration

Started with SP 800-90B in 2016-2018
• We were standing up entropy source evaluation
• They’d been doing it for >10 years
• They gave us lots of feedback
• Even came to NIST to help us finalize requirements

We got a huge benefit from their experience, even when we
couldn’t copy everything they were doing

53

Ongoing collaboration

Work on aligning requirements where possible
• Not always easy: our processes are very different!
• Especially focused on incompatibilities...
• ...e.g., we require you do X, they require you do not-X.

Online meetings (currently every 2 weeks)
• In-person meetings, joint presentations, joint publications

54

SP 800-90C and AIS 20/31

• NIST working on finalizing SP 800-90C
• BSI working on updating AIS 20/31
• Opportunity to avoid conflicts in standards ”from the

beginning”
• MUCH easier to fix before standard is finalized
• Reflected in 90C and new AIS 20/31, especially RBGC / DRT.1

Note: 90C RBG constructions ≈ AIS 20/31 functionality classes

55

New Joint Publication: NIST IR 8446

Bridging the Gap between Standards on Random Number Generation
• Comparison of SP 800-90 Series and AIS 20/31
• Discussion of RBG constructions/functionality classes
• Focus on how to comply with requirements of NIST and BSI at once
• Goal: help vendors comply with both standards in same design!

https://csrc.nist.gov/pubs/ir/8446/ipd
Open for public comment until Dec 20, 2024

56

Wrapup

• SP 800-90
• 90A: DRBGs (DRNGs)
• 90B: Entropy Sources (PTGs and NTGs)
• 90C: Constructions (Functionality classes)

• Working with BSI to harmonize with AIS 20/31
• Goal: Make it workable to comply with both
• Standards will never be identical...
• ...but we can avoid contradictions between standards

57

Questions?

58

