Overview of SP 800-90

cryptographically strong
pseudorandom bits

> DRBG >

seed

/entropy\
\source /

\ /

Entropy
Source(s)
(90B)

DRBG
(90A)

RBG Construction
(90C)

John Kelsey
NIST and KU Leuven
November 2024 RBG Output

SP 800-90: Big Picture

cryptographically strong
pseudorandom bits

> DRBG >

/ Eix seed
/entropy \
\source /

Entropy source provides seed
DRBG generates cryptographically strong outputs

Rule: Outputs always come from DRBG

SP 800-90: A, B, and C

Entropy
Source(s)
(908B)

DRBG
(90A)

RBG Construction
(90C)

|

RBG Output

Three parts:

e 90A: DRBGs (Deterministic Random Bit Generators)
e 90B: Entropy Sources

e 90C: Constructing Random Bit Generators

Timetable

SP 900-90A
e First version in 2006
e Multiple revisions since then
e Lots of installed base
e Under revision now

SP 800-90B published 2018

SP 800-90C final draft
e Working through public comments
e Final version out in early 2025

90A: DRBGs

\ seed cryptographically strong
/ seudorandom bits
entro py DRBG

sou rce

SP 800-90A: DRBGs

\ seed - cryptographically strong
/ \Yseudorandom bits
entropy > DRBG >

. DRBG algorithms —

Deterministic—requires entropy source for seed
e Three standard DRBGs

Cannot define your own DRNG
 Security strength (128, 192, 256)

AlS 20/31 now requires &~ 256 bit security

We will still allow lower security strengths

DRBGs

CTR-DRBG
« Based on AES block cipher
o Security based on AES key size (128,192,256) + entropy

HMAC-DRBG
« Based on HMAC PRF (SHA2, SHA3)
o Security 128,192,256: based on entropy

Hash-DRBG
e Based on hash fn (SHA2, SHA3)
o Security 128,192,256: based on entropy

A DRBG knows how to do three things:

Instantiate(seed, personalization string)
e Create new DRBG instance, ready to use

Reseed(seed, additional input)
« Refresh DRBG state to recover from compromise

Generate(length, additional_input)
e Produce random-looking output

The optional additional inputs

Personalization string and additional input are optional
« No assumptions made about contents

e May be adversarially chosen

e Must not weaken security of DRBG

e Should improve security when they contain entropy

A module need not use or even support these optional inputs

Backtracking resistance and
Enhanced backward secrecy

DRBGs guarantee enhanced backward secrecy between generate calls.

Attacker doesn’t learn Attacker learns all these

« Expensive “gating” operation

T M 1

« Enhanced backward secrecy
(AIS20 definition)
provided by all three DRBGs BETWEEN calls

N
_compromise

generate | generate | generate >

Changes to SP 800-90A

Entropy sources and randomness sources

Current 90A:
e |nstantiate and reseed draw from entropy source
e Fresh entropy required!

e 90C and Next 90A:
e |nstantiate and reseed draw from EITHER
e Entropy source
e RBG with equal or greater security strength

Instantiation

Current 90A: Instantiating DRBG with s bits of security
e Entropy input (s bits entropy) + nonce
e Nonce MAY be string with s/2 bits entropy

90C and next 90A:
e Randomness input (from entropy source OR RBG)

e Entropy source: 3s/2 bits min-entropy

e RBG: 3s/2 bits output, RBG must be same or higher strength
e No more nonce

Problem: long outputs from generate()

Attacker doesn'’t learn Attacker learns all these

AR AT AR A

__generate [generate [generate -

o Generate calls currently allow *huge* outputs
o 219 bits

compromise

e Potential for side-channel attacks
o Especially for AES CTR-DRBG!

« Backtracking resistance only BETWEEN generate calls
« Compromise state in middle of generate == get all outputs

Planned changes

« Require outputs not leave module until generate completes
« Avoid keeping a DRBG state in middle of generate
e This has really been done in modules
e "Generate function SHOULD complete in a short period of time."

e Considering smaller output limits in next 90A revision
e Maybe 2048 bits?
 Can still get many bits, just multiple generate calls

The reseed interval

Current limit 248 generate calls

o Artifact from original analysis of DRBGs

e Goal: limit outputs to no more than 264 bits or bytes
e Doesn’t really accomplish any security goal
« Going away

Still considering requiring periodic reseeds in some constructions
(90C)

XOF-based DRBG

e Planning to add a DRBG based on any XOF
o Example: Shake256, Ascon-XOF

« XDRBG: Design published in ToSC in 2024

o Comes with security proof

« Designed to work with SP 800-90 and AIS 20/31 requirements
« Got feedback and review on paper from BSI*

* Thanks, Johannes!

SP 900-90B: Entropy Sources

- EE;()ljl-(:Ga Au.<<;;\

W

Noise
Source \

\\\\\
h /
In

raw conditioned

l nin \//\ .. .
outputs ™| €onditioning —ozputs

conditioning,-f’"f \ J
function /

error
i n Health Tests message >

18

What is an Entropy Source?

SP 800-908B is about how to build an entropy source.
e Produces bitstrings

 Tells you how much min-entropy they have
« No guarantee on how entropy distributed in output.

- constant bits event
" v ~ _counter

\
T T t L

AA A high entropy

unpredictable bits low entropy

19

Components of an Entropy Source

Noise Source | raw
Where the entropy comes from B random
Health tests o Noise numbers internal
Verify the noise source is still \ Source < random
working correctly / numbers
Conditioning] NN (
Optional processing of noise raw - C e conditioned
onditionin >
source outputs before output. Y outputs 9 outputs
error
Health Tests message >

Reminder: An entropy source provides bitstrings with known entropy/sample

20

Noise Source

e Provides bitstrings with some inherent unpredictability.

e Don't need high entropy/bit

e Do need to know how much entropy* we are getting

e Physical OR non-physical
e Examples:

« ring oscillators
e interrupt timings
e noisy diodes + counting

* Min-entropy, not Shannon entropy!

I

P

v !
4 X

tof test

S
1J |
L.

=

v

 clock

loggles with each
0-1-crossing

internal

—» random

numbers

Yu¥a-

Entropy estimation

o Submitter has to provide entropy estimate and
justification
« Stochastic models not yet required
« Future: required for physical sources

o Automated tests for entropy estimation™

« Relied on too heavily now—should be a sanity check
« Applied to raw bits / raw random numbers

e IID vs non-IID track

o If designer claims source is IID....

* Next version of 90B will require stochastic models for physical noise sources!

11D track

e« Submitter claims IID source

e Only evaluate as IID if it is claimed

e Submitter provides justification for IID claim

e |ID tests try to falsify claim of IID

e Permutation tests
e Chi-square test

Deriving a number

11D Case:
« Count most common value in output and construct boundon P__..

Non-1ID Case:
« Apply many different entropy estimators against sequential dataset.

« Parameter estimation tests (NSA)
« Predictor tests (NIST)
« Longest repeated substring + K-tuple estimate (NIST)

e Take minimum of all estimates.
+ restart tests 2 another entropy estimate

Final result is minimum of submitter claim and test results

Health Testing

Noise sources are fragile

Failures can be invisible [N
« Conditioning can hide flaws ~ Noise \
e QOutputs go into DRBGs — Source \
« ..nobody ever sees them .
B n \\ J

: : s 4 raw e conditioned
Failures 2 security vulnerabilities outputs ™| €onditioning —oyinuts
e Improperly seeded DRBG \
« Predictable keys Health Tests m:;gge >

Health tests are essential for security—mandatory in SP 800-90B

Health Tests: Continuous / Startup / On Demand

Continuous Tests
. Going on all the time behind the scenes ///

 90B requirements mostly here \;__\. Noise iﬁ

< Source <
Startup Tests = 2ol
% raw e - conditioned
e Run at startup outputs > €onditioning —oyzputs
« May just be continuous tests run over many bits '
Health Tests mggge >

On Demand

e Run when requested
« May just be rerun of the startup tests

Our Continuous Health Tests

e Repetition Count Test — Detect when the source gets “stuck” on one
output for much longer than expected.

« Adaptive Proportion Test — Detect when one value becomes much
more common in output than expected.

« Note that tests:
e Require minimal resources
« Outputs can be used as they are produced
« Allow tunable false-positive rates

Entropy/sample + false positive rate = cutoff values

Our tests meet minimum requirement

 This will change in next version of 90B
e Designers should understand their sources much better than we can.

« Should design health tests tuned for source
« How might entropy estimate be wrong?
« What observable effect will each failure have?

e Qur tests are intended as a MINIMUM bar
« We want vendors to do better.

Vendor-Defined Tests: Requirements

« Submitters need to show that their tests detect the same signals as
ours:
e Detect if a value repeats too often (the source gets stuck).
e Detect if some value becomes much too likely.

e Submitters can show this by:
e Proof or convincing argument
e Statistical simulation

Health Tests: Next version of 20B

e Better requirements for health tests

« No more "safe harbor" by using our tests

« We never expected these to be what everyone used

e Base tests on parameters of stochastic model + failure
modes of source

Conditioning

Post-process raw bits from
noise source A

_ . Noise <
» Optional < Source -
 Improve statistics - NN T

- Conditioning - S2diioned
* Compress = improve y s 9 outputs
entropy/bit orror _
Health Tests message

e Spread entropy through

bit string

90B does not require entropy source outputs to be high entropy

Vetted Conditioning Functions

90B specifies six “vetted” conditioning functions.

e Cryptographic mechanisms based on well-understood primitives
e Large input and output size, large internal width

e CAN claim full entropy under some circumstances

« No need to run entropy estimates on outputs

e Usually no state between calls

Future plan: Have external list of vetted conditioning functions so additions
don't require revising standard!

How to get full entropy in 90B

» Noise source with known entropy/symbol
e Vetted conditioning function

e At least n+64 bits min-entropy in =2 n bits

OUtpUt Getting Full Entropy in 800-90B

< noise sabits cryptographic N bits output
= source —_minentrapy cOnONNg n(1-2%) bits
= entropy

internal width >= n

Non-Vetted Conditioning

o Anything not on our list

o Generally non-cryptographic
e Require some justification that these don't interact badly with source

e Pretty minimal requirement
o Count on statistical tests to detect problems

Next 90B version:
o Justification based on stochastic model (physical sources)

« Should justify output entropy claim!

Entropy accounting

If you are not getting full entropy....

Vetted conditioning function:
« Use output entropy formula

Non-vetted conditioning function:
« Use output entropy formula
e Run tests on conditioned outputs

Output_Entropy(n,,,n,, q, h;,):

(1 = Byon)
1. Let B, = 27Mnand P, = <
. 2n—1 " h - Bits of min-entropy input
2. n=min(n,,q). - Input size of function (bits)
3. w=2%""P,,+ Phigh
4. U=2"n" 4 \/) n(znm—n)ln(2) A — Internal width of function (bits)
5 w=U X Pl - Qutput size of function (bits)
' ow
6. Return —log(max(y, w))

*The formula used to generate Output_Entropy() is adapted from the formulas
provided in [RaSt98].

36

SP 800-90C: Constructions

Entropy
Source(s)
(90B)

DRBG
(90A)

RBG Construction
(90C)

RBG Output

37

90C: RBG Constructions

 90A: DRBG SEntrop(y) DRBG
ource(s
« 90B: Entropy source (90B) (90A)

e 90C: Random Bit Generator (RBG)

RBG Construction

Specifies four RBG constructions (90C)
« Different performance/security trade offs \
Also specifies other things RBG Output

e Full entropy requirements
e External conditioning
e Multiple entropy sources

RBG Constructions

« RBG1 = externally seeded DRBG

« RBG2 = internally seeded DRBG

« RBG3 = full-entropy RBG

« RBGC = chain or tree of DRBGs originating w/ entropy source

Different engineering requirements
Different security and performance traits
Correspond approximately to AIS 20/31 functionality classes

RBG2: Internally Seeded DRBG

N

7 source \\ or reseed
/‘/\ \'\

Ay
\entropy ~ instantiate |

DRBG
mechanism

generate,
outputs

e Entropy source + DRBG mechanism

 Internal entropy source

« Doesn’t need persistent state
o MAY support reseed on demand

o MAY reseed automatically “behind the scenes”

 Fixed security strength: {128,192,256}-bits

40

RBG2(P) and RBG2(NP)

RBG2(P)
e Physical entropy source

« ~ DRG.4

RBG2(NP)
« Non-physical entropy source

+ ~ NTG.1 (+ DRG.3?)

RBG3: Full Entropy RBG

 RBG with full-entropy outputs

e Supports ALL security levels
IF entropy source working as expected
Full entropy outputs = perfect security

IF entropy source fails
Fall back to DRBG Mechanism = computational security

» Always based on physical entropy source

Full Entropy???

Getting Full Entropy in 800-90

entropy —-"*64bits |cryptographic n bits output
itioni = :
source ~ —minentropy "N n(1-2%) bits
Ry entropy
VNN T internal width >= n

« Each bit of output has (1-2-32) bits min-entropy

o Given 264 output bits, can’t distinguish from ideal random
e Even with unlimited computation

Minimal trust of cryptographic primitives

See NIST-IR 8427 for justification and analysis

43

RBG3-RS

RBG3-RS
' '.;‘-».._,_)'\\./"A“‘\./ '”. »
< entropy ~— reseed with DRBG generate
-/_ source = S+64 bits S bits
A min-entropy

|

o Start with RBG2 (internally-seeded DRBG)

« With physical entropy source

e Reseed between each output

e s+64 bits entropy in, s bits out

. =PTG.3

44

RBG3-RS in detail

DRBG with s bit security strength:

For each s bits required:
« Reseed with s+64 bits entropy
« Generate s bits output

RBG3-RS call generate arbitrary
number of output bits in this way!

s+64 bits entropy, /

[generate

S+64 bits entropy»g’"

s+64 bits entropy,

| generate

reseed

S bits output

v

s bits output

S bits output

RBG3: XOR Constuction

instantiate,
R B G 3 'XO R periodically reseed v

DRBG
— > P
entropy + mechanism

outputs

 Start with a full entropy source

o Outputs indistinguishable from ideal random bits
« n bits of output have n-2-32 bits of min-entropy

« Seed DRBG mechanism
« Outputs = DRBG output XOR Full Entropy Source output
e Can also get normal DRBG outputs

o Just generate from DRBG mechanism

~ DRG.4 (physical entropy source + DRBG)

46

RBG1: Externally Seeded DRBG

RBG1: Instantiation RBG1: Generation
T T T T T T T T T DRBG generate»
R%(rBZ secure | . DRBG mechanism °utPuts
h | '
RBG3 channe : mﬂe(fi]:lTs‘m }-— _f
| state | state

 Instantiated once from outside module
MUST be seeded from RBG2(P) or RBG3
Physically secure channel needed
RBG?2 at least as high security strength as RBG1
Note: These are all documentation requirements—can’t be tested!

47

RBG1: Generation

RBG1 (cont’d) DRBG | generate
mechanism ©UYputs

Instantiates once

Never reseeds ::-_-_}———t-_-_-_.::}

state

No onboard entropy source

Requires persistent memory
o ...to keep constantly-evolving DRBG state

Memory must not reveal previous states!
Cannot recover from a compromise
o Fixed security strength: 128, 192, 256.

~ DRG.3

48

RBG1 Sub-DRBGs

RBG1 Security Boundary

RBG1
(Source RBG)

7\

Sub-DRBG Sub-DRBG
1 L I n

« RBG1 construction can instantiate
one layer of subordinate DRBGs
(Sub-DRBG)

e Sub-DRBGs reside in the same
security boundary as the RBG1
source

e Use the same DRBG mechanism

« Sub-DRBG output shall not provide
input for the RBG1 source

49

RBGC il |

Source

L

. Each DRBG: .

Has exactly one seed source —
May seed multiple DRBGs [
May provide bits to applications

Cannot seed a DRBG with higher security than its own

[

DRBG

Application

e |nitial source: Ultimate root of trust " Application) | DRBG DRBG
. RBG2(P) — T T
« RBG2(NP) I S _‘_
« RBG3 _ Application Application
« Full entropy source T N

~ DRT.1

50

Loops are not allowed

Example: RBGC with loop
« No entropy, no security

« No DRBG may be part of its own
seed source!

p

/
/

v
DRBG
HMAC-DRBG(256)

\ 4

DRBG

\

|

|

\

\

‘
\
\\

_CTR-DRBG(256)

\ 4

DRBG
Hash-DRBG(256)

f
‘
‘
/

v'/"
/
/‘/
//
e g
_//
P

This leads to somewhat complicated rules and issues

NIST/BSI Collaboration

NIST/BSI Collaboration

Started with SP 800-90B in 2016-2018

« We were standing up entropy source evaluation

e They’d been doing it for >10 years

e They gave us lots of feedback

e Even came to NIST to help us finalize requirements

We got a huge benefit from their experience, even when we
couldn’t copy everything they were doing

Ongoing collaboration

Work on aligning requirements where possible

e Not always easy: our processes are very different!

e Especially focused on incompatibilities...

e ...e.g8., We require you do X, they require you do not-X.

Online meetings (currently every 2 weeks)
e In-person meetings, joint presentations, joint publications

SP 800-90C and AlIS 20/31

e NIST working on finalizing SP 800-90C
« BSI working on updating AIS 20/31

e Opportunity to avoid conflicts in standards “from the
beginning”

« MUCH easier to fix before standard is finalized
 Reflected in 90C and new AIS 20/31, especially RBGC / DRT.1

Note: 90C RBG constructions = AlS 20/31 functionality classes

New Joint Publication: NIST IR 8446

Bridging the Gap between Standards on Random Number Generation
« Comparison of SP 800-90 Series and AlS 20/31

 Discussion of RBG constructions/functionality classes

e Focus on how to comply with requirements of NIST and BSI at once
e Goal: help vendors comply with both standards in same design!

https://csrc.nist.gov/pubs/ir/8446/ipd
Open for public comment until Dec 20, 2024

\ seed

Wrapup entropy"

(source / > DRBG

« SP 800-90
e 90A: DRBGs (DRNGs)
e 90B: Entropy Sources (PTGs and NTGs)
e 90C: Constructions (Functionality classes)

« Working with BSI to harmonize with AIS 20/31
e Goal: Make it workable to comply with both
« Standards will never be identical...

cryptographically strong
pseudorandom bits

>

e ...but we can avoid contradictions between standards

Questions?

