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Commitment schemes

Suppose we are playing a game, and want to choose who will go first

CQ

Coin flip! Does it work over the phone?
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Commitment schemes

In a commitment scheme a sender wants to commit to some value m.

the sender publishes a commitment

depending on m

L ater the sender releases m,

and a verifier can check that 7,

was created using m



Commitment schemes

The scheme should be hiding:

- the commitment 7 should leak no information about m

The scheme should be binding:

- no other value m’ #= m should be able to open T°

()
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Tensors

Tensor product is an operation on vectors

We would like to compute the tensoru @ v ® w where u = [u, u,|, v = [v, v, |, W = [w;, w,].

We proceed by first expanding the matrix v - w! :

v.wl — viwy Miwp
VLW oWy

Now we multiply this matrix by each entry of u, storing them in a list as we go:

ViW; VW, ViW; VW,
Uq ,» Up

VoW VoWy VoW VoWy
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Tensors

Let 7 be a tensor. We can always write It as

1,],k

e.g.

Wviwy uiyiws | |UpViwy UpViwy
F= UIVOW1 U V)W |7 [UV W UpVoWy

[ = l/llvlwl ‘ el ® 61 ® 61
+UViW, -6 Q € Q €y:--

= Z Uyiwy - €; X €; R e,

1,],k



Tensors




Tensors

m €
x02Y

E e; Qe

° ok

l,]»

= 2

1,],k
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(A,B,C) x t := Z m; i Ae; @ Be; @ Cey
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Let A, B, C be invertible matrices

We can compute the following isomorphism applied to 7 :

(A,B,C) x t := Z m; i Ae; @ Be; @ Cey
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An example over [ :

t=2€i®ej®ek=

1,],k
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An example over [ :

-

1,],k

1 1 1 1 1 1 1 1 1
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An example over [ :

t=2€i®ej®ek=
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1 1 1,11 1 1,1 1 1}, A=
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An example over [ :

t=2€i®ej®ek=

1,],k

(A, L 1) % 1:= Z Ae; Qe Q e
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An example over [ :

f=26i®€j®ek=

],k
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An example over [ :

1 1 1 1 1 1

Z=Z€i®€j®€k= 1 1 1},|1 1 17,
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An example over [ :
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Decisional Tensor Isomorphism Problem (dTIP):

Given random v, v; decide whether there exists

(A, B, C) such that (A, B, C) x vy = v,
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Tensors

Decisional Tensor Isomorphism Problem (dTIP):

Given random v, v; decide whether there exists

(A, B, C) such that (A, B, C) x vy = v,

Computational Tensor Isomorphism Problem (cTIP):

Given random v, v; compute

(A, B, C) such that (A, B, C) % vy = v,

10
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TiI-family

A code is the linear subspace that is generated by a set of matrices

G:=I[G,...G,]

Codes are equivalent if they generate the same subspace.

Equivalent codes take the form
G/ — [/11,1G1 + .../Il,nG

n’

o °/1n,1G1 + - /ln,nGn]

Computational Tensor Isomorphism Problem (cTIP): Matrix Code Equivalence (MCE):

Given random v,;, V; compute * Given G, G’ compute (if it exists)

(A, B, C) such that (A, B, C) *x vy = v,

(A,B,C)suchthat (A,B,C) x G = G

» *this is for the case where all the dimensions are n
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such that
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TI-family

A trilinear form is a map

. n n n .« —
@, X, X, =, p(e;e,e) ==m;

We say two trilinear forms, @, y, are equivalent if there exists some A € GL, ()

such that
o(u,v,w) = w(Au, Av, Aw)

Computational Tensor Isomorphism Problem (cTIP): Trilinear Form Equivalence (TFE):

Given random v,;, V; compute Given D, D’ compute (if it exists)

(A, B, C) such that (A, B, C) % vy = v, (A, B, C) such that (A,B,C) x D = D'

12



DFG paper

The DFG paper (Asiacrypt 2023) seeks to use this hard problem in a
commitment scheme

Non-Interactive Commitment from
Non-Transitive Group Actions

1[0000—0001—/3((—661(]’ Andrea
2[0000—0001—9689—8473]

Giuseppe D’Alconzo

2[0000—0002—3872—7251]

Flamini , and Andrea Gangemi

I Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli
Abruzzi 24, 10129 Torino, Italy

2 Department of Mathematics, University of Trento, Povo, 38123 Trento, Italy

giuseppe.dalconzo@polito.it, {andrea.flamini,andrea.gangemi}@unitn.it

Abstract. Group actions are becoming a viable option for post-quantum
cryptography assumptions. Indeef in recent years some works have shown

how to construct primitives from assumptions based on isogenies of ellip-
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DFG paper

Is it hiding?

‘ Decisional Tensor Isomorphism Problem (dTIP):

Given random v, v, decide whether there exists

(A, B, C) such that (A, B, C) % vy = v,

A s it binding?
— (Aa Ba C) * ((A()9 BOa C()) * tl)

14
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Tensors

rank-1tensor:u @ v Q@R w

k
rank-k tensor : Z U@V QW
i=1

15
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rank-1tensor :u @ v ® w hard problem :

givenatensor 1 :=[1,,...T, ],

n

k
rank-k tensor : Z ULV, QW compute the rank of 1’
i=1
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Tensors

rank-1tensor :u @ v ® w hard problem :

givenatensor 1 :=[1,,...T, ],

n

k
rank-k tensor : Z ULV, QW compute the rank of 1’
i=1

For random tensors, this problem is believed to be hard

15
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DFG paper

e ©
o ® e © )
° o © ® o
°
° °
° °
° °

- we need [y and 7; to be in different orbits
Lemma : rank((A, B, C) % t) = rank(t)

-different ranks ensures this

16
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DFG paper
We need two tensors with different rank... but computing rank is hard...

1 0 O] O O O] JO
0 0 O0,]0 1 OF, [0

0 0 0 LO O 04 LO

1 0 O] O O O] JO
0 0 O0,]0 1 OF,]0

0 0 0 LO O 04 LO

3

=1

2
f1:2€i®ei®€i=

=1

OO O O O O
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We need two tensors with different rank... but computing rank is hard...

3 1 0 0] [00 0] [0 OO
h=) e®e®e= [0 0 o],[o 1 o],[o 0 0]
1 0 00 Lo ool loo1
> 1 0 0] [0 0 0] [0 0O
=) e®e®e= [0 0 o],[o 1 o],[o 0 o]
- 0 0 0ol Lo ool looo

An example, over I :
5 4 21 [1 0 O] [5 2 3 4 3 41 |6 1T 6 |5 25
1 1 14 L0 2 41 |5 4 2 2 1 41 |1 4 2] [4 2 1
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DFG paper

lo> [
T=(A,B,C)*1,

binding — perfect

hiding — related to the dTIP

Decisional Tensor Isomorphism Problem (dTIP):

Given random v, v; decide whether there exists

I,(A,B,C, D)

(A, B, C) such that (A, B, C) % vy = v,

18
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Distinguishing attack

the rank of a point :

We say the rank of u = (4, ...u,) in T = [T, ...T ] is exactly

rank(u); = mnk(ulTl + -eu, T, )

n—n

We will be concerned with points of rank O

n—n

0 0
.e. points u such that rank(u, T, + ---u,T,) = lo 0

19
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1 0 O 0 0 O 0 0 O
Recall that =10 O O],10 1 O,{O0 O O

0 0 0f LO O OF LO O 1

So which u are such that ~ rank(u), = |0 u, 0| = l() 0 O] ?
0 0 u
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Distinguishing attack

1 0 O 0 0 O 0 0 O
Recall that =10 O O],10 1 O,{O0 O O

0 0 0f LO O OF LO O 1

So which u are such that ~ rank(u), = |0 u, 0| = l() 0 O] ?
0 0 u

t, only has the trivial rank 0 point : = u = (0,0,0)

20
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Distinguishing attack
[1 0 O] lO

H=10 0 0], 10

0 0 O 0

mnk(u)t1 = |O Uy



Distinguishing attack

1 001 OO O] 10 OO
t=10 0 0/,]/0 1 0/,]0 O O
0 0 0l Lo 0 0] Lo 0 O

uy 0 0 0 0 O

rank(u), = [0 u, O =10 0 O

t, has one (non-trivial) rank 0 point : | scalar multiples of u = (0,0,1)

21
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Distinguishing attack

So 7y has one rank 0 point and 7, has no rank 0 points
Lemma : 1, and (A, B, C) * 1, have the same number of rank O points

Thus, given some commitment, 7T'= (A, B, C) % £,

if 7" has no rank 0 points, then b = ()

» O(n*) complexity

if 7'has one rank 0 point (up to scalar multiplication),
then b = 1

Computing the rank 0 points in 1 requires solving n? linear equations in n variables

22
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Parameters
n q
14 4093
22 4093
30 2039

No parameters were given in DFG.

These parameters were taken from MEDS.



Distinguishing attack

Parameters
n q
Distinguishing attack:
14 4093
» — Runtime < 1 second
22 4093
30 2039

No parameters were given in DFG.

These parameters were taken from MEDS.
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This attack broke hiding and a special case of dTIP

Decisional Tensor Isomorphism Problem (dTIP):

Given random Vv, v, decide whether there exists

(A, B, C) such that (A, B, C) * vy = v,
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Distinguishing attack

This attack broke hiding and a special case of dTIP

Decisional Tensor Isomorphism Problem (dTIP):

Given random Vv, v, decide whether there exists

(A, B, C) such that (A, B, C) * vy = v,

What about cTIP?

Computational Tensor Isomorphism Problem (cTIP):

Given random v, v; compute

(A, B, C) such that (A, B, C) x vy = v,
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A first attempt : Grobner basis?
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Computational attack

Suppose we have determined b = 0, let's recover (A, B, C) from T = (A, B, C) % 1,

A first attempt : Grobner basis?

We can use a Grébner basis to solve systems of multivariate polynomials

— uses Buchberger's algorithm

— manipulates the polynomials to eventually apply Gaussian elimination

25
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Computational attack

di1 d1p di3 bl,l bl,z b1,3 €11 C12 G113
I = dr1 Upo U3, bz,l bz,z b2,3 , | €21 G20 €23 * I

31 d3p d33 by, by, by, (31 (32 (33
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Computational attack

2 .
by, b1y b, — 3n“ variables

di1 d1p di3 , €11 C12 G113
1 = dr1 Uppy dp3|, bz,l bz,z b2,3 , | €21 €22 €23 * I

31 d3p d33 by, by, by, (31 (32 (33

26



Computational attack

) :
biy by bis| [ei, ca ¢l — 3n“ variables

di1 d1p di3
T=| |%1 %y B3|, by by bysf, |21 €2 @3| | %1y, — 3n? equations
31 d3p d33 by, by, by, (31 (32 (33

26



Computational attack

2 .
by, by bs ¢y Cla 3 — 3n“ variables

i1 42 43
T=\| %1 %2 %3|,|by by bys|, |21 C2 C3| | *1y — 3n? eqguations

a~1 Gxn d C31 C3p C
232 T3] by bap bysf LT3 T320 33 — cubic equations
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Computational attack

) :
biy by bis| [ei, ca ¢l — 3n“ variables

i1 42 43
T=\| %1 %2 %3|,|by by bys|, |21 C2 C3| | *1y — 3n? eqguations

a~1 Gxn d C31 C3p C
232 T3] by bap bysf LT3 T320 33 — cubic equations

Upon first try, our instance has too many solutions...

26
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How can we reduce the number of solutions?

The stabilizer group of t, is matrix triples (M, M,, M;) such that
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How can we reduce the number of solutions?

The stabilizer group of t, is matrix triples (M, M,, M;) such that

Some examples of stabilizer elements include :

A0 0] [4 0 o] [4 0 o
0 4 0|l-]10 4 Of-]10 2 of=1
o 0 Al o o 4| [0 0 A
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Computational attack

How can we reduce the number of solutions?

The stabilizer group of t, is matrix triples (M, M,, M;) such that

Some examples of stabilizer elements include :

any permutation matrices (P, P, P),

0 0 1 0
0 4 of-lo 4 ofl-]o 4 ol =1 ea. |1 0 0
0 A 0 00 1
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By identifying stabilizer elements, we were able to filter out possibilities for (A, B, C)

Note, fy has exactly n rank 1 points, and thus so does T'= (A, B, C) * 1,

Lemma : the rows of A~! are all rank 1 points

To find candidates for B and C we can solve
6 :
the (linear) set of equations given by * O(n”) complexity

(I,B,D)xty=A"LI1CHxT

28



Computational attack

Runtime for the attack:

n q Time (s)
14 4093 9.3
22 4093 141.6
30 2039 858.9

29
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0 0 O
There was only 1 rank-0 matrix: lO 0 O]
0 0 O

Already for rank 1, there are too many matrices to check...

MinRank:

Given an integer r € N and k matrices M, ...M|,
find integers X, ...x; (not all zero) such that

mnk(lel + ... +kak) <r
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We used the following work (AsiaCrypt 2020):

Improvements of Algebraic Attacks for solving
the Rank Decoding and MinRank problems

Magali Bardet*®, Maxime Bros', Daniel Cabarcas®, Philippe Gaborit!, Ray
Perlner?, Daniel Smith-Tone??, Jean-Pierre Tillich*, and Javier Verbel®

! Univ. Limoges, CNRS, XLIM, UMR 7252, F-87000 Limoges, France
maxime.brosQunilim.fr
 National Institute of Standards and Technology, USA
3 University of Louisville, USA
* Inria, 2 rue Simone Iff, 75012 Paris, France

° LITIS, University of Rouen Normandie, France
® Universidad Nacional de Colombia Sede Medellin, Medellin, Colombia

Abstract. In this paper, we show how to significantly improve alge-
braic techniques for solving the MinRank problem, which is ubiquitous
in multivariate and rank metric code based cryptography. In the case of
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with direct linearization

Improvements of Algebraic Attacks for solving
the Rank Decoding and MinRank problems

— for r > 1 the complexity
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How can we ensure that v, v, are generated randomly*

— pseudo-random number generator
— cryptographic hash function

— trusted third party
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Repair

This gives a scheme that is

— statistically binding
— computationally hiding

— complexity increases from O(n°) to O(n*)
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Proofs of knowledge

Sometimes we will want to prove that we know a committed value without revealing it

vV @.p.cy N Prover: Verifier:
v,h, T
ch € {0,1}
{(A’,B’, ), ch =0
(A, B, C) (A’A,B'B,C'C), ch=1

— we need to keep v secret

35
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(A, B, C, b) secret
dy(0) Aoy 1

O O

Prover: Verifier:
(Vos V1) (dg(0)9 dg(l))? 4
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(A, B, C, b) secret
dy(0) Aoy 1
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Prover: Verifier:
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Proofs of knowledge

(A, B, C, b) secret

do'(O) da(l)
Prover: Verifier:
(Vo, V1)a (dg(0)9 dg(l))? I
Vo v, ch € {0,1}
c,(A’, B, C", ch =0
(A'A,B'B,C'C),0(b), ch=1
O
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(Vo, V1)a (dg(0)9 dg(l))? I
ch € {0,1}

o, (A", B, ('), ch =0
(A'A,B'B,C'C),06(b), ch=1

36
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Thank youl!



