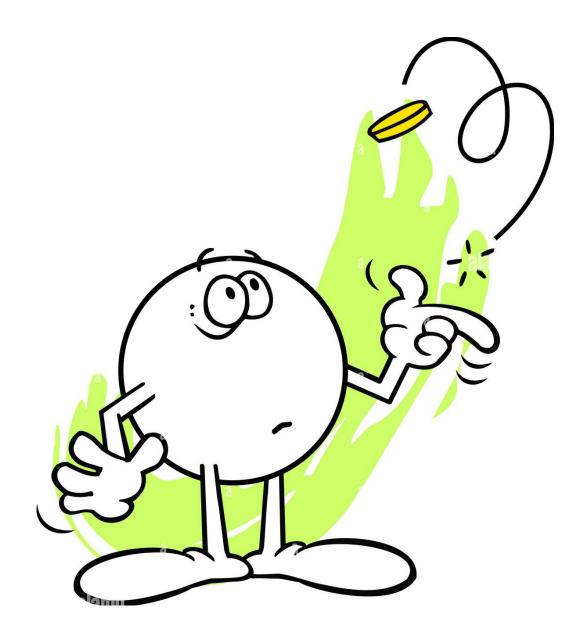
Solving the *Tensor Isomorphism Problem* for special orbits with low rank points

Valerie Gilchrist, Laurane Marco, Christophe Petit, Gang Tang

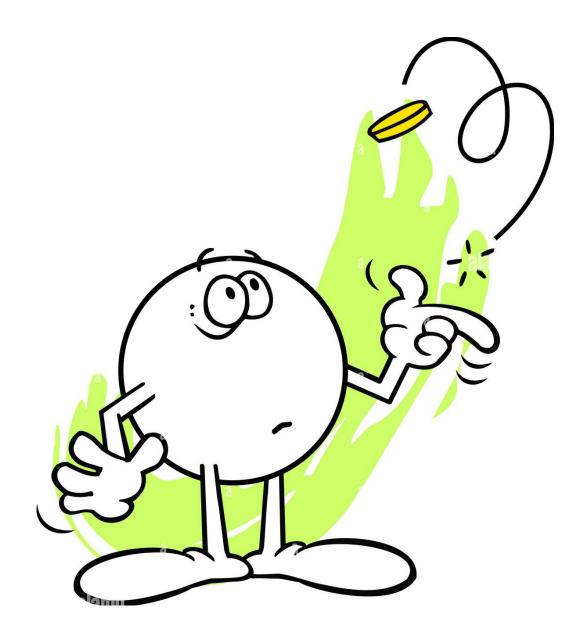
Published at Crypto 2024

Suppose we are playing a game, and want to choose who will go first



Coin flip!

Suppose we are playing a game, and want to choose who will go first



Coin flip!

Suppose we are playing a game, and want to choose who will go first

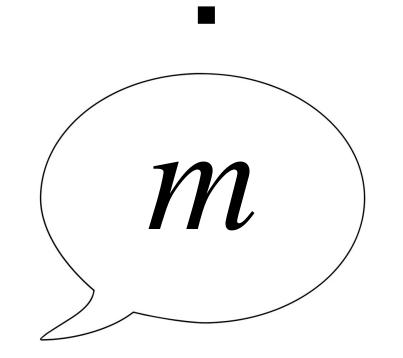
Does it work over the phone?

In a *commitment* scheme a sender wants to commit to some value *m*.

In a *commitment* scheme a sender wants to commit to some value *m*.

Later the sender releases *m*,

and a verifier can check that T_m



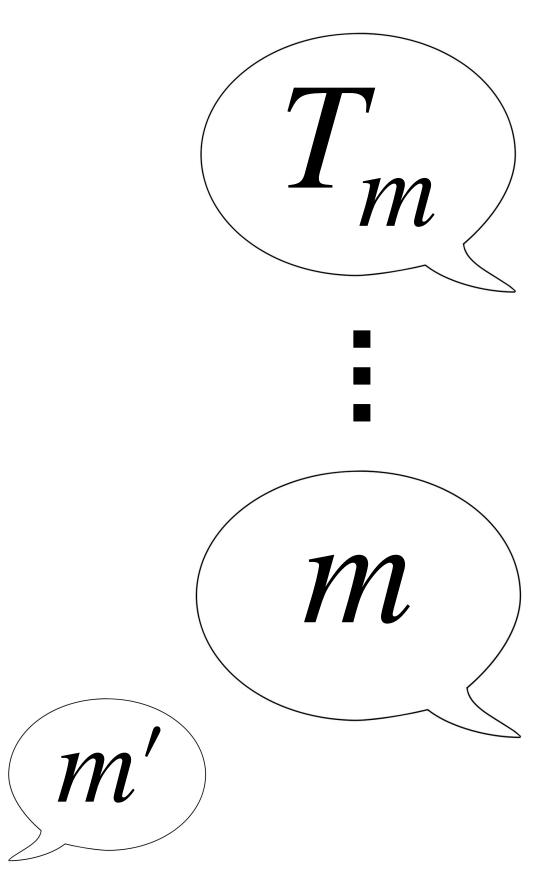
was created using m

the sender publishes a commitment depending on *m*

The scheme should be *hiding*:

- the commitment T should leak no information about m

The scheme should be *binding*: - no other value $m' \neq m$ should be able to open T



Tensor product is an operation on vectors

Tensor product is an operation on vectors

We would like to compute the tensor $\mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}$ where $\mathbf{u} = [u_1, u_2], \mathbf{v} = [v_1, v_2], \mathbf{w} = [w_1, w_2]$.

Tensor product is an operation on vectors

We proceed by first expanding the matrix $\mathbf{v} \cdot \mathbf{v}$

 $\mathbf{v} \cdot \mathbf{w}^T =$

We would like to compute the tensor $\mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}$ where $\mathbf{u} = [u_1, u_2], \mathbf{v} = [v_1, v_2], \mathbf{w} = [w_1, w_2]$.

$$\mathbf{w}^{T}:$$

$$= \begin{bmatrix} v_{1}w_{1} & v_{1}w_{2} \\ v_{2}w_{1} & v_{2}w_{2} \end{bmatrix}$$

Tensor product is an operation on vectors

We would like to compute the tensor $u \otimes v \otimes$

We proceed by first expanding the matrix $\mathbf{v} \cdot \mathbf{w}$ $\mathbf{v} \cdot \mathbf{w}^T =$

Now we multiply this matrix by each entry of **u**, storing them in a list as we go:

$$u_{1}\begin{bmatrix}v_{1}w_{1} & v_{1}w_{2} \\ v_{2}w_{1} & v_{2}w_{2}\end{bmatrix}, u_{2}\begin{bmatrix}v_{1}w_{1} & v_{1}w_{2} \\ v_{2}w_{1} & v_{2}w_{2}\end{bmatrix}$$

w where
$$\mathbf{u} = [u_1, u_2], \mathbf{v} = [v_1, v_2], \mathbf{w} = [w_1, w_2]$$

$$\mathbf{w}^{T}:$$

$$= \begin{bmatrix} v_{1}w_{1} & v_{1}w_{2} \\ v_{2}w_{1} & v_{2}w_{2} \end{bmatrix}$$

$$t := \sum_{i,j,k} m_{i,j,k} e_i \otimes e_j$$

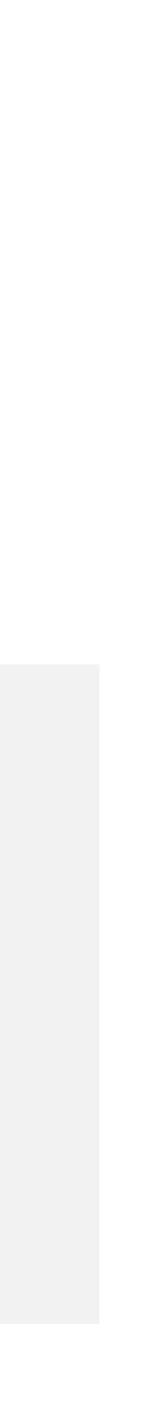
 $t := \sum' m_{i,j,k} e_i \otimes e_j \otimes e_k$

$$t := \sum_{i,j,k}$$

e.g.

$$t = \begin{bmatrix} u_1 v_1 w_1 & u_1 v_1 w_2 \\ u_1 v_2 w_1 & u_1 v_2 w_2 \end{bmatrix}, \begin{bmatrix} u_2 v_1 w_1 & u_2 v_1 w_2 \\ u_2 v_2 w_1 & u_2 v_2 w_2 \end{bmatrix}$$

 $m_{i,j,k} e_i \otimes e_j \otimes e_k$



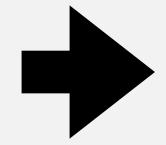
$$t := \sum_{i,j,k}$$

e.g.

$$t = \begin{bmatrix} u_1 v_1 w_1 & u_1 v_1 w_2 \\ u_1 v_2 w_1 & u_1 v_2 w_2 \end{bmatrix}, \begin{bmatrix} u_2 v_1 w_1 & u_2 v_1 w_2 \\ u_2 v_2 w_1 & u_2 v_2 w_2 \end{bmatrix}$$

 $m_{i,j,k} e_i \otimes e_j \otimes e_k$

$t = u_1 v_1 w_1 \cdot e_1 \otimes e_1 \otimes e_1$ $+u_1v_1w_2\cdot e_1\otimes e_1\otimes e_2\cdots$



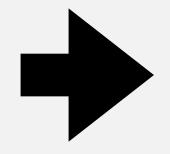
$$t := \sum_{i,j,k}$$

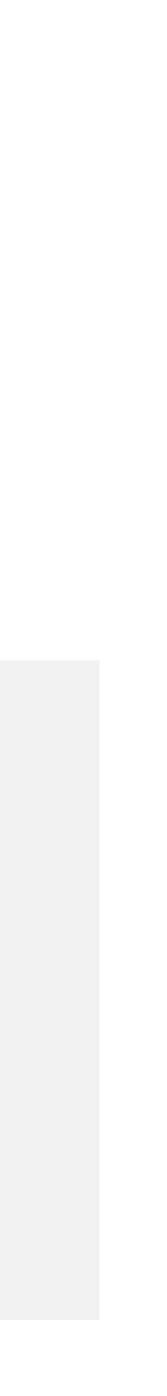
e.g.

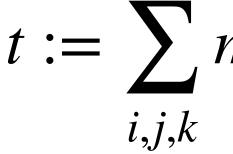
$$t = \begin{bmatrix} u_1 v_1 w_1 & u_1 v_1 w_2 \\ u_1 v_2 w_1 & u_1 v_2 w_2 \end{bmatrix}, \begin{bmatrix} u_2 v_1 w_1 & u_2 v_1 w_2 \\ u_2 v_2 w_1 & u_2 v_2 w_2 \end{bmatrix}$$

 $m_{i,j,k} e_i \otimes e_j \otimes e_k$

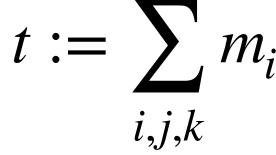
 $t = u_1 v_1 w_1 \cdot e_1 \otimes e_1 \otimes e_1$ $+u_1v_1w_2 \cdot e_1 \otimes e_1 \otimes e_2 \cdots$ $= \sum u_i v_j w_k \cdot e_i \otimes e_j \otimes e_k$ i,j,k







$t := \sum m_{i,j,k} e_i \otimes e_j \otimes e_k$



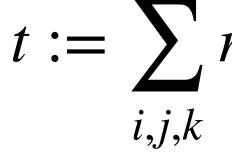
Let A, B, C be invertible matrices

We can compute the following isomorphism applied to t:

$$(A, B, C) \star t := \sum_{i,j,k} m_{i,j,k} A d$$

 $t := \sum m_{i,j,k} e_i \otimes e_j \otimes e_k$

 $e_i \otimes Be_j \otimes Ce_k$



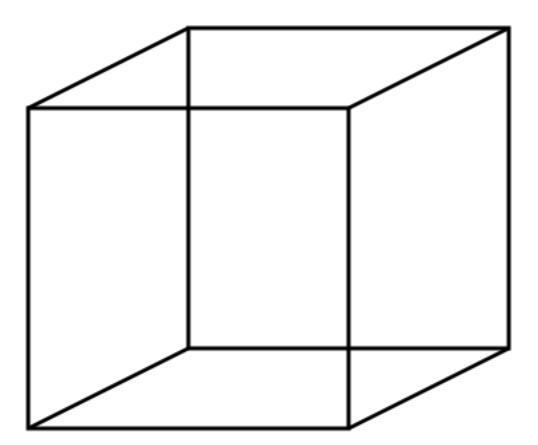
Let A, B, C be invertible matrices

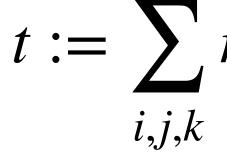
We can compute the following isomorphism applied to t:

$$(A, B, C) \star t := \sum_{i,j,k} m_{i,j,k} A d$$

 $t := \sum m_{i,j,k} e_i \otimes e_j \otimes e_k$

 $e_i \otimes Be_j \otimes Ce_k$





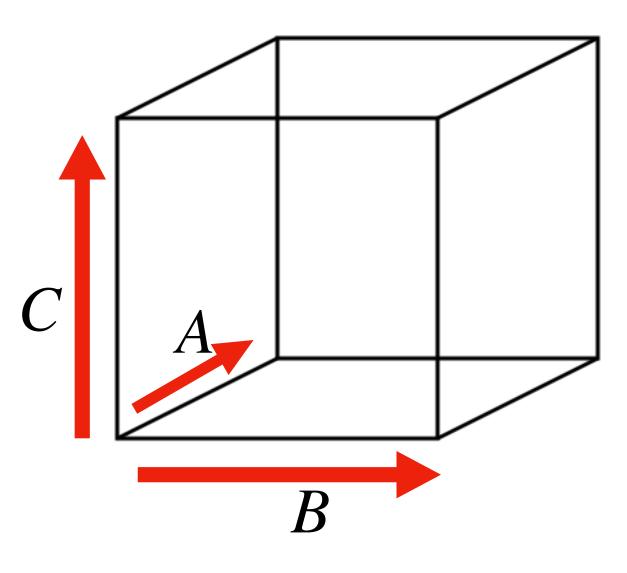
Let A, B, C be invertible matrices

We can compute the following isomorphism applied to t:

$$(A, B, C) \star t := \sum_{i,j,k} m_{i,j,k} A d$$

 $t := \sum m_{i,j,k} e_i \otimes e_j \otimes e_k$

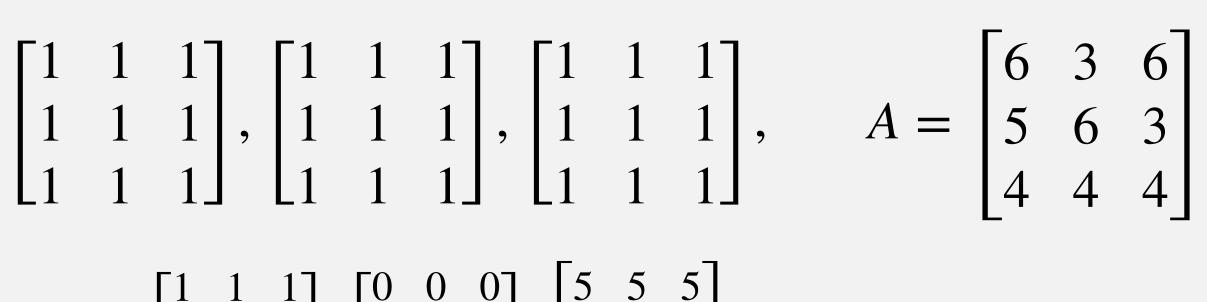
 $e_i \otimes Be_j \otimes Ce_k$

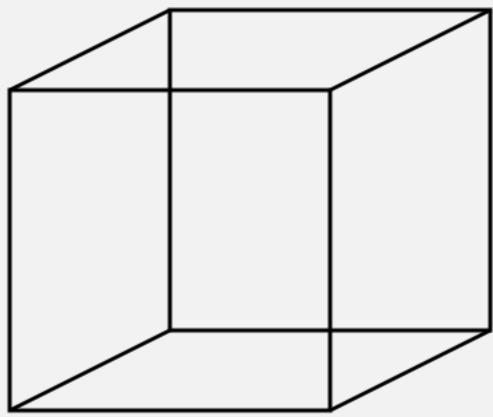


$$t = \sum_{i,j,k} e_i \otimes e_j \otimes e_k = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix}$$

$$t = \sum_{i,j,k} e_i \otimes e_j \otimes e_k = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix}$$

$$(A, I, I) \star t := \sum_{i,j,k} Ae_i \otimes e_j \otimes e_k = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 5 & 5 & 5 \\ 5 & 5 & 5 \\ 5 & 5 & 5 \end{bmatrix}$$





An example over \mathbb{F}_7 :

$$t = \sum_{i,j,k} e_i \otimes e_j \otimes e_k = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix}$$

$$(A, I, I) \star t := \sum_{i, j, k} Ae_i \otimes e_j \otimes e_k = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$= \sum_{j,k} Ae_1 \otimes e_j \otimes e_k + \sum_{j,k} Ae_2 \otimes e_j \otimes e_$$

 $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, A = \begin{bmatrix} 6 & 3 & 6 \\ 5 & 6 & 3 \\ 4 & 4 & 4 \end{bmatrix}$ $\left| \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right|, \left[\begin{array}{cccc} 5 & 5 & 5 \\ 5 & 5 & 5 \\ 5 & 5 & 5 \end{array} \right]$ $\otimes e_k + \sum Ae_3 \otimes e_j \otimes e_k$ j,k

An example over \mathbb{F}_7 :

$$t = \sum_{i,j,k} e_i \otimes e_j \otimes e_k = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix}$$

$$(A, I, I) \star t := \sum_{i, j, k} Ae_i \otimes e_j \otimes e_k = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$= \sum_{j,k} Ae_1 \otimes e_j \otimes e_k + \sum_{j,k} Ae_2 \otimes e_j \otimes \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

 $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \quad A = \begin{bmatrix} 6 & 3 & 6 \\ 5 & 6 & 3 \\ 4 & 4 & 4 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 5 & 5 & 5 \\ 5 & 5 & 5 \\ 5 & 5 & 5 \end{bmatrix}$ $\bigotimes e_k + \sum_{j,k} Ae_3 \otimes e_j \otimes e_k$

An example over \mathbb{F}_7 :

$$t = \sum_{i,j,k} e_i \otimes e_j \otimes e_k = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix}$$

$$(A, I, I) \star t := \sum_{i, j, k} Ae_i \otimes e_j \otimes e_k = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$= \sum_{j,k} Ae_1 \otimes e_j \otimes e_k + \sum_{j,k} Ae_2 \otimes e_j \otimes e_$$

 $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, A = \begin{bmatrix} 6 & 3 & 6 \\ 5 & 6 & 3 \\ 4 & 4 & 4 \end{bmatrix}$ $\stackrel{1}{\underset{1}{}}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 5 & 5 & 5 \\ 5 & 5 & 5 \\ 5 & 5 & 5 \end{bmatrix}$ $e_2 \otimes e_j \otimes e_k + \sum_{j,k} Ae_3 \otimes e_j \otimes e_k$

An example over \mathbb{F}_7 :

$$t = \sum_{i,j,k} e_i \otimes e_j \otimes e_k = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix}$$

$$(A, I, I) \star t := \sum_{i, j, k} Ae_i \otimes e_j \otimes e_k = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$= \sum_{j,k} Ae_1 \otimes e_j \otimes e_k + \sum_{j,k} Ae_2 \otimes e_j \otimes e_$$

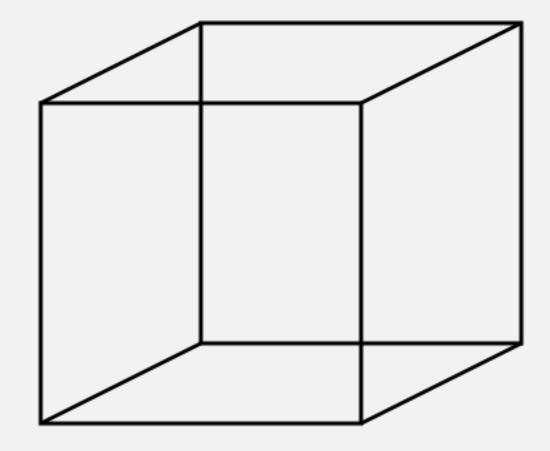
 $\begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \quad A = \begin{bmatrix} 6 & 3 & 6 \\ 5 & 6 & 3 \\ 4 & 4 & 4 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 5 & 5 & 5 \\ 5 & 5 & 5 \\ 5 & 5 & 5 \end{bmatrix}$ $\bigotimes e_k + \sum_{j,k} Ae_3 \otimes e_j \otimes e_k$

$$t = \sum_{i,j,k} e_i \otimes e_j \otimes e_k = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} A e_i \otimes e_j \otimes e_k = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 5 & 5 & 5 \\ 5 & 5 & 5 \\ 5 & 5 & 5 \end{bmatrix}$$
$$= \sum_{i,k} Ae_i \otimes e_j \otimes e_k + \sum_{j,k} Ae_2 \otimes e_j \otimes e_k + \sum_{j,k} Ae_3 \otimes e_j \otimes e_k$$
$$= \begin{bmatrix} 6 & 6 & 6 \\ 6 & 6 & 6 \\ 6 & 6 & 6 \end{bmatrix}, \begin{bmatrix} 5 & 5 & 5 \\ 5 & 5 & 5 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 4 & 4 & 4 \\ 4 & 4 & 4 \end{bmatrix} + \begin{bmatrix} 3 & 3 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3 \end{bmatrix}, \begin{bmatrix} 6 & 6 & 6 \\ 6 & 6 & 6 \\ 6 & 6 & 6 \end{bmatrix}, \begin{bmatrix} 3 & 3 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3 \end{bmatrix}, \begin{bmatrix} 4 & 4 & 4 \\ 4 & 4 & 4 \end{bmatrix} + \begin{bmatrix} 3 & 3 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3 \end{bmatrix}, \begin{bmatrix} 6 & 6 & 6 \\ 6 & 6 & 6 \\ 6 & 6 & 6 \end{bmatrix}, \begin{bmatrix} 3 & 3 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3 \end{bmatrix}, \begin{bmatrix} 4 & 4 & 4 \\ 4 & 4 & 4 \end{bmatrix} + \begin{bmatrix} 3 & 3 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3 \end{bmatrix}, \begin{bmatrix} 6 & 6 & 6 \\ 6 & 6 & 6 \\ 6 & 6 & 6 \end{bmatrix}, \begin{bmatrix} 3 & 3 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3 \end{bmatrix}, \begin{bmatrix} 4 & 4 & 4 \\ 4 & 4 & 4 \end{bmatrix} + \begin{bmatrix} 6 & 6 & 6 \\ 6 & 6 & 6 \\ 6 & 6 & 6 \end{bmatrix}, \begin{bmatrix} 3 & 3 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3 \end{bmatrix}, \begin{bmatrix} 4 & 4 & 4 \\ 4 & 4 & 4 \end{bmatrix}$$

$$t = \sum_{i,j,k} e_i \otimes e_j \otimes e_k = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix}$$

$$(A, I, I) \star t := \sum_{i, j, k} Ae_i \otimes e_j \otimes e_k = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix},$$

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 5 & 5 & 5 \\ 5 & 5 & 5 \\ 5 & 5 & 5 \end{bmatrix},$$



$$t = \sum_{i,j,k} e_i \otimes e_j \otimes e_k = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, A = \begin{bmatrix} 6 & 3 & 6 \\ 5 & 6 & 3 \\ 4 & 4 & 4 \end{bmatrix}$$

$$(I,I) \star t := \sum_{i,j,k} Ae_i \otimes e_j \otimes e_k = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 5 & 5 & 5 \\ 5 & 5 & 5 \\ 5 & 5 & 5 \end{bmatrix}, A, A, I) \star t := \sum_{i,j,k} e_i \otimes Ae_j \otimes e_k = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, A, I) \star t := \sum_{i,j,k} e_i \otimes Ae_j \otimes e_k = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, A, I) \star t := \sum_{i,j,k} e_i \otimes Ae_j \otimes e_k = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, A, I = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, A, I = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, A, I = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, A, I = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, A, I = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, A, I = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, A, I = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, A, I = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, A, I = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, A, I = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, A, I = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, A, I = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, A, I = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, A, I = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, A, I = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, A, I = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, A, I = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, A, I = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, A, I = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, A, I = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, A, I = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, A, I = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, A, I = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, A, I = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, A, I = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0$$

$$t = \sum_{i,j,k} e_i \otimes e_j \otimes e_k = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, A = \begin{bmatrix} 6 & 3 & 6 \\ 5 & 6 & 3 \\ 4 & 4 & 4 \end{bmatrix}$$
$$(A, I, I) \star t := \sum_{i,j,k} Ae_i \otimes e_j \otimes e_k = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 5 & 5 & 5 \\ 5 & 5 & 5 \\ 5 & 5 & 5 \end{bmatrix}, (I, A, I) \star t := \sum_{i,j,k} e_i \otimes Ae_j \otimes e_k = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 &$$

$$t = \sum_{i,j,k} e_i \otimes e_j \otimes e_k = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, A = \begin{bmatrix} 6 & 3 & 6 \\ 5 & 6 & 3 \\ 4 & 4 & 4 \end{bmatrix}$$

$$(A, I, I) \star t := \sum_{i,j,k} Ae_i \otimes e_j \otimes e_k = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 5 & 5 & 5 \\ 5 & 5 & 5 \\ 5 & 5 & 5 \end{bmatrix},$$

$$(I, A, I) \star t := \sum_{i,j,k} e_i \otimes Ae_j \otimes e_k = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix},$$

$$t = \sum_{i,j,k} e_i \otimes e_j \otimes e_k = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, A = \begin{bmatrix} 6 & 3 & 6 \\ 5 & 6 & 3 \\ 4 & 4 & 4 \end{bmatrix}$$
$$, l, l) \star t := \sum_{i,j,k} Ae_i \otimes e_j \otimes e_k = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 5 & 5 & 5 \\ 5 & 5 & 5 \\ 5 & 5 & 5 \end{bmatrix},$$
$$A, l) \star t := \sum_{i,j,k} e_i \otimes Ae_j \otimes e_k = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 &$$

$$t = \sum_{i,j,k} e_i \otimes e_j \otimes e_k = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, A = \begin{bmatrix} 6 & 3 & 6 \\ 5 & 6 & 3 \\ 4 & 4 & 4 \end{bmatrix}$$
$$(A, I, I) \star t := \sum_{i,j,k} Ae_i \otimes e_j \otimes e_k = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 5 & 5 & 5 \\ 5 & 5 & 5 \\ 5 & 5 & 5 \end{bmatrix},$$
$$(I, A, I) \star t := \sum_{i,j,k} e_i \otimes Ae_j \otimes e_k = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1$$

$$t = \sum_{i,j,k} e_i \otimes e_j \otimes e_k = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, A = \begin{bmatrix} 6 & 3 & 6 \\ 5 & 6 & 3 \\ 4 & 4 & 4 \end{bmatrix}$$
$$(A, I, I) \star t := \sum_{i,j,k} Ae_i \otimes e_j \otimes e_k = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 5 & 5 & 5 \\ 5 & 5 & 5 \\ 5 & 5 & 5 \end{bmatrix},$$
$$(I, A, I) \star t := \sum_{i,j,k} e_i \otimes Ae_j \otimes e_k = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1$$

$$t = \sum_{i,j,k} e_i \otimes e_j \otimes e_k = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, A = \begin{bmatrix} 6 & 3 & 6 \\ 5 & 6 & 3 \\ 4 & 4 & 4 \end{bmatrix}$$
$$(A, I, I) \star t := \sum_{i,j,k} Ae_i \otimes e_j \otimes e_k = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 5 & 5 & 5 \\ 5 & 5 & 5 \\ 5 & 5 & 5 \end{bmatrix}, (I, A, I) \star t := \sum_{i,j,k} e_i \otimes Ae_j \otimes e_k = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 5 & 5 & 5 \end{bmatrix}, (I, I, A) \star t := \sum_{i,j,k} e_i \otimes e_j \otimes Ae_k = \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{bmatrix}$$

Tensors

Decisional Tensor Isomorphism Problem (dTIP):

Given random v_0 , v_1 decide whether there exists

(A, B, C) such that $(A, B, C) \star v_0 = v_1$

Tensors

Decisional Tensor Isomorphism Problem (dTIP):

- Given random v_0 , v_1 decide whether there exists
 - (A, B, C) such that $(A, B, C) \star v_0 = v_1$

Computational Tensor Isomorphism Problem (cTIP):

- Given random v_0 , v_1 compute
- (A, B, C) such that $(A, B, C) \star v_0 = v_1$

A code is the linear subspace that is generated by a set of matrices

 $G := [G_1, ..., G_n]$

A code is the linear subspace that is generated by a set of matrices

Codes are equivalent if they generate the same subspace. Equivalent codes take the form $G' = [\lambda_{1,1}G_1 + \cdots \lambda_n]$

- $G := [G_1, ..., G_n]$

$$A_{1,n}G_n, \cdots \lambda_{n,1}G_1 + \cdots \lambda_{n,n}G_n$$
]

A code is the linear subspace that is generated by a set of matrices

Codes are equivalent if they generate the same subspace. Equivalent codes take the form

Computational Tensor Isomorphism Problem (cTIP):

Given random v_0 , v_1 compute

(A, B, C) such that $(A, B, C) \star v_0 = v_1$

- $G := [G_1, ..., G_n]$

 $G' = [\lambda_{1,1}G_1 + \cdots + \lambda_{1,n}G_n, \cdots + \lambda_{n,1}G_1 + \cdots + \lambda_{n,n}G_n]$

A code is the linear subspace that is generated by a set of matrices

Codes are equivalent if they generate the same subspace. Equivalent codes take the form $G' = [\lambda_{1,1}G_1 + \cdots \lambda]$

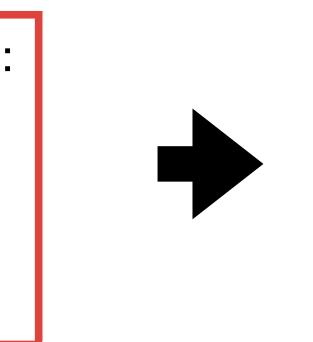
Computational Tensor Isomorphism Problem (cTIP):

Given random v_0, v_1 compute

(A, B, C) such that $(A, B, C) \star v_0 = v_1$

- $G := [G_1, ..., G_n]$

$$A_{1,n}G_n, \cdots \lambda_{n,1}G_1 + \cdots \lambda_{n,n}G_n$$
]



Matrix Code Equivalence (MCE):

Given G, G' compute (if it exists)

(A, B, C) such that $(A, B, C) \star G = G'$

A trilinear form is a map

 $\varphi: \mathbb{F}_q^n \times \mathbb{F}_q^n \times \mathbb{F}_q^n \to \mathbb{F}_q^n,$

A trilinear form is a map

 $\varphi: \mathbb{F}_q^n \times \mathbb{F}_q^n \times \mathbb{F}_q^n \to \mathbb{F}_q, \qquad \varphi(e_i, e_j, e_k) := m_{i,j,k}$

A trilinear form is a map

$$\varphi: \mathbb{F}_q^n \times \mathbb{F}_q^n \times \mathbb{F}_q^n \to \mathbb{F}_q, \qquad \varphi(e_i, e_j, e_k) := m_{i,j,k}$$

such that

We say two trilinear forms, φ, ψ , are **equivalent** if there exists some $A \in GL_n(\mathbb{F}_q)$

 $\varphi(u, v, w) = \psi(Au, Av, Aw)$

A trilinear form is a map

$$\varphi: \mathbb{F}_q^n \times \mathbb{F}_q^n \times \mathbb{F}_q^n \to \mathbb{F}_q, \qquad \varphi(e_i, e_j, e_k) := m_{i,j,k}$$

We say two trilinear forms, φ, ψ , are **equivalent** if there exists some $A \in GL_n(\mathbb{F}_q)$ such that $\varphi(u,v,w)$ =

Computational Tensor Isomorphism Problem (cTIP):

Given random v_0, v_1 compute

(A, B, C) such that $(A, B, C) \star v_0 = v_1$

$$= \psi(Au, Av, Aw)$$

A trilinear form is a map

$$\varphi: \mathbb{F}_q^n \times \mathbb{F}_q^n \times \mathbb{F}_q^n \to \mathbb{F}_q, \qquad \varphi(e_i, e_j, e_k) := m_{i,j,k}$$

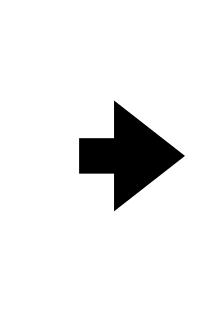
We say two trilinear forms, φ, ψ , are **equivalent** if there exists some $A \in GL_n(\mathbb{F}_q)$ such that $\varphi(u, v, w) =$

Computational Tensor Isomorphism Problem (cTIP):

Given random v_0 , v_1 compute

(A, B, C) such that $(A, B, C) \star v_0 = v_1$

$$= \psi(Au, Av, Aw)$$



Trilinear Form Equivalence (TFE):

Given D, D' compute (if it exists)

(A, B, C) such that $(A, B, C) \star D = D'$

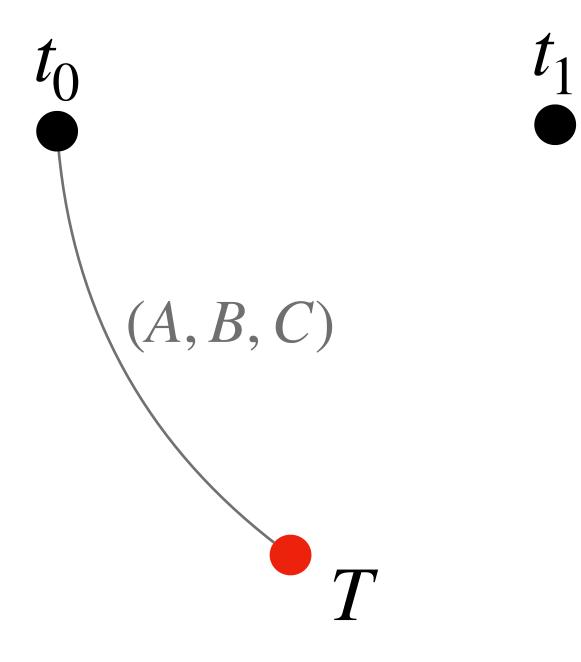
The DFG paper (Asiacrypt 2023) seeks to use this hard problem in a commitment scheme

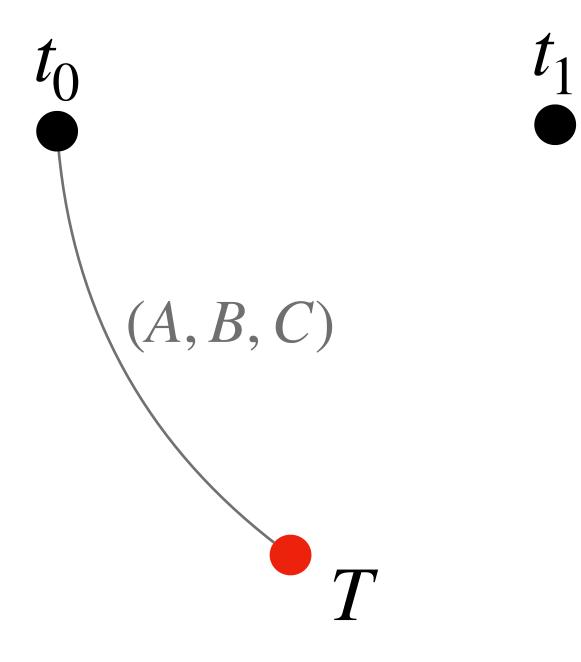
Non-Interactive Commitment from Non-Transitive Group Actions

Giuseppe D'Alconzo^{1[0000-0001-7377-6617]}, Andrea Flamini^{2[0000-0002-3872-7251]}, and Andrea Gangemi^{2[0000-0001-9689-8473]}

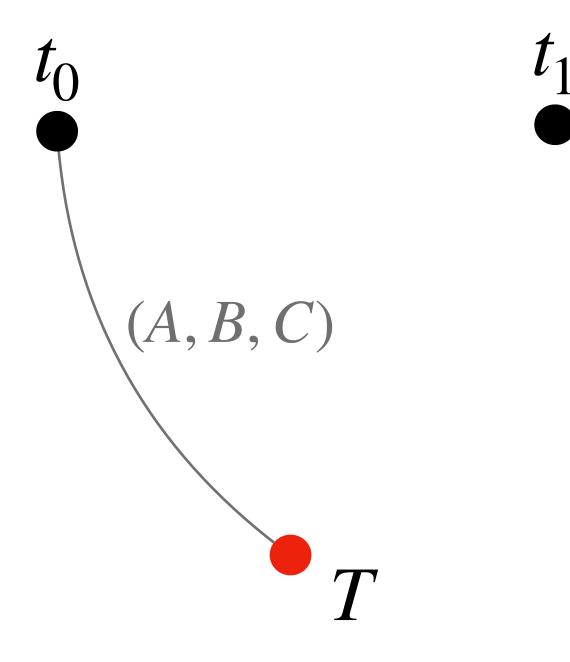
¹ Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
² Department of Mathematics, University of Trento, Povo, 38123 Trento, Italy
giuseppe.dalconzo@polito.it, {andrea.flamini,andrea.gangemi}@unitn.it

Abstract. Group actions are becoming a viable option for post-quantum cryptography assumptions. Indeed in recent years some works have shown how to construct primitives from assumptions based on isogenies of ellip-





Is it hiding?

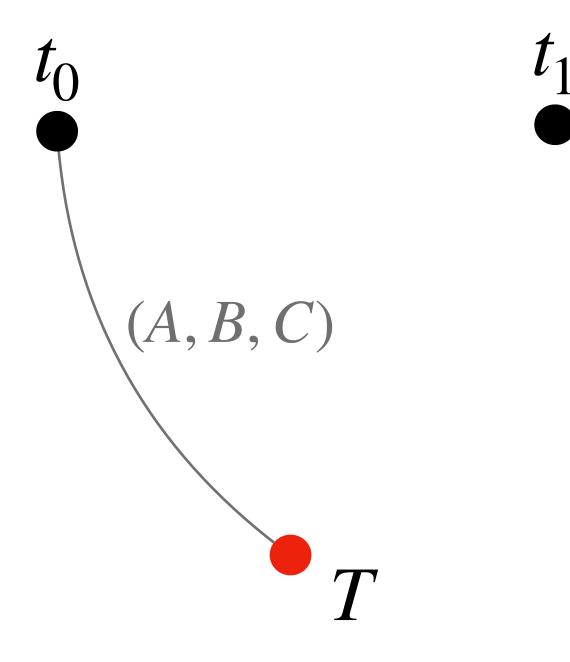


Is it hiding?

Decisional Tensor Isomorphism Problem (dTIP):

Given random v_0 , v_1 decide whether there exists

(A, B, C) such that $(A, B, C) \star v_0 = v_1$



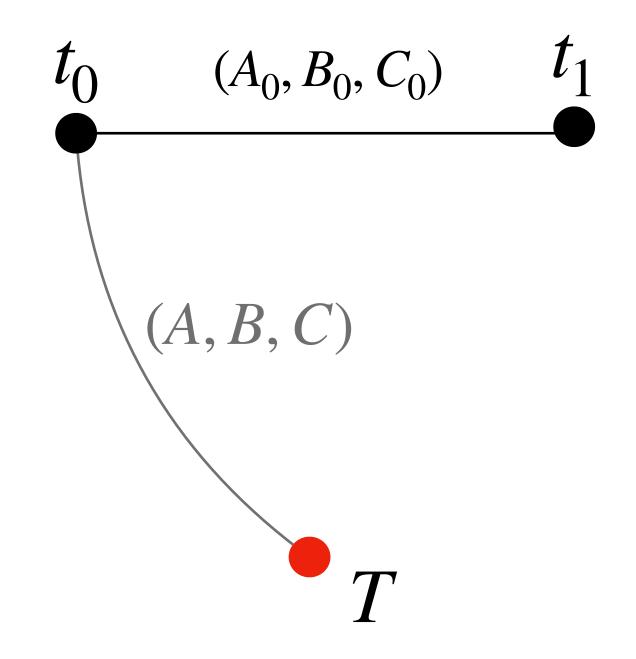
Is it hiding?

Decisional Tensor Isomorphism Problem (dTIP):

Given random v_0 , v_1 decide whether there exists

(A, B, C) such that $(A, B, C) \star v_0 = v_1$

Is it **binding**?



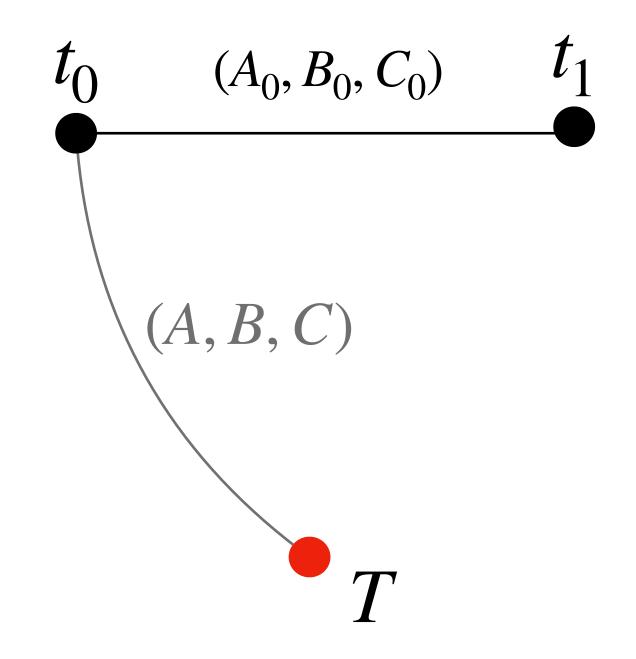
Is it hiding?

Decisional Tensor Isomorphism Problem (dTIP):

Given random v_0 , v_1 decide whether there exists

(A, B, C) such that $(A, B, C) \star v_0 = v_1$

Is it **binding**?



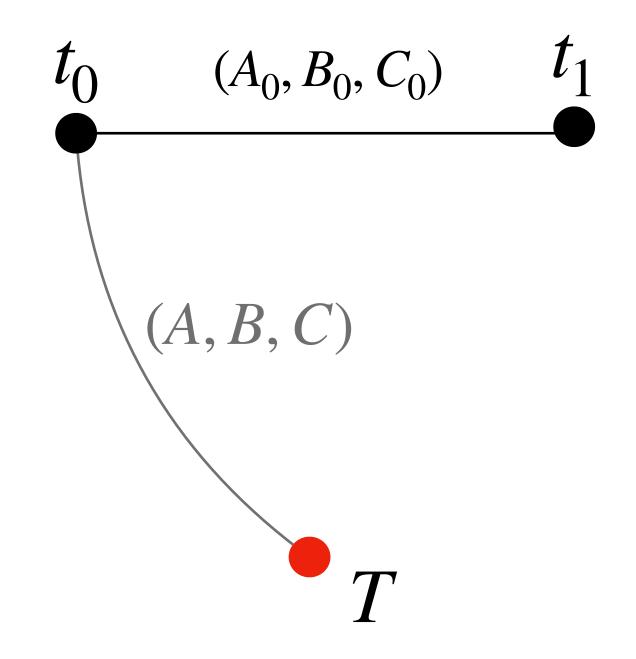
Is it hiding?

Decisional Tensor Isomorphism Problem (dTIP):

Given **random** v_0 , v_1 **decide** whether there exists

(A, B, C) such that $(A, B, C) \star v_0 = v_1$

Is it binding? $T = (A, B, C) \star t_0$



Is it hiding?

Decisional Tensor Isomorphism Problem (dTIP):

Given **random** v_0 , v_1 **decide** whether there exists

(A, B, C) such that $(A, B, C) \star v_0 = v_1$

Is it **binding**?

$$T = (A, B, C) \star t_0$$

 $= (A, B, C) \star ((A_0, B_0, C_0) \star t_1)$

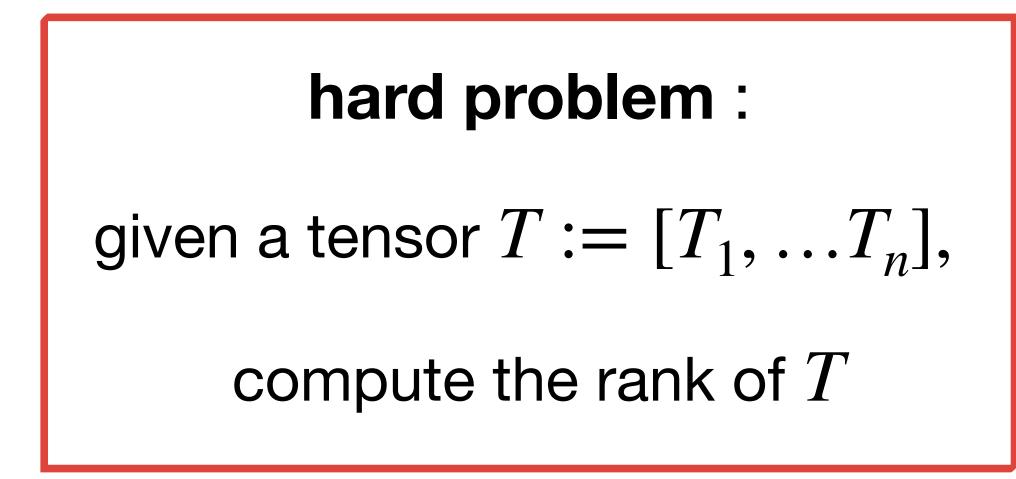
rank-*k* tensor :
$$\sum_{i=1}^{k} \mathbf{u}_i \otimes \mathbf{v}_i \otimes \mathbf{w}_i$$

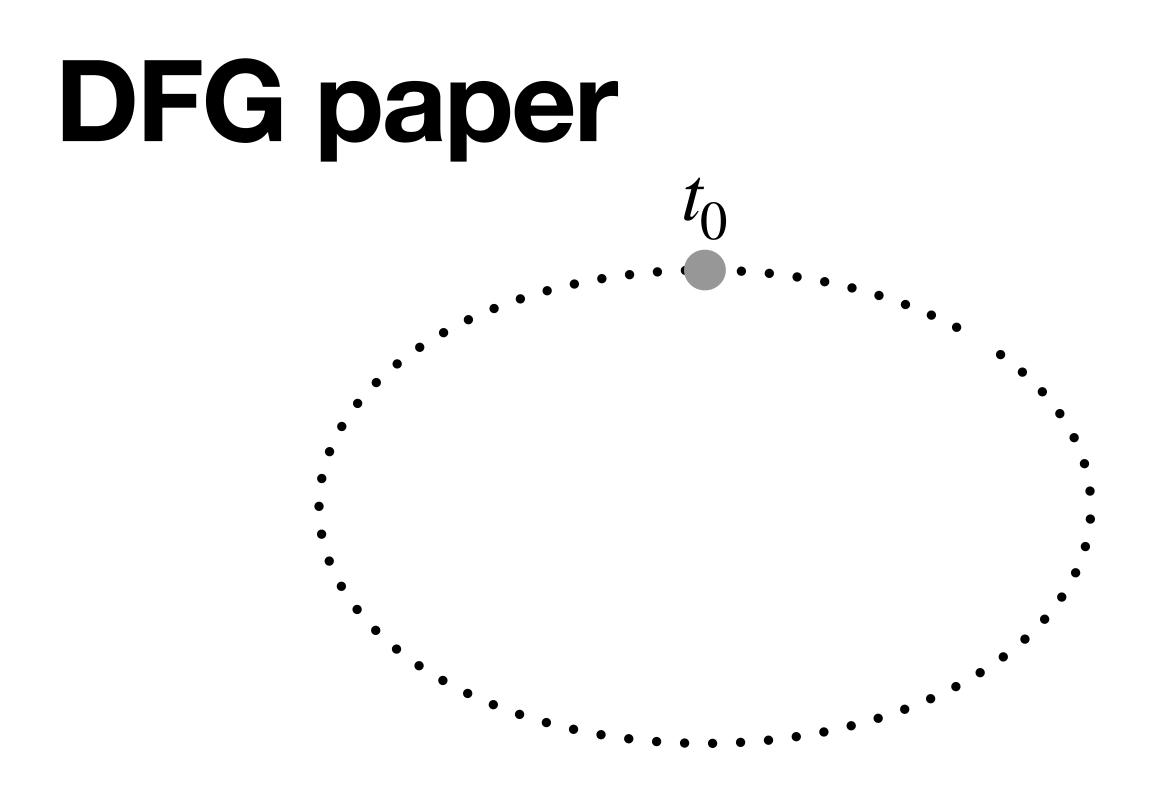
rank-*k* tensor :
$$\sum_{i=1}^{k} \mathbf{u}_i \otimes \mathbf{v}_i \otimes \mathbf{w}_i$$

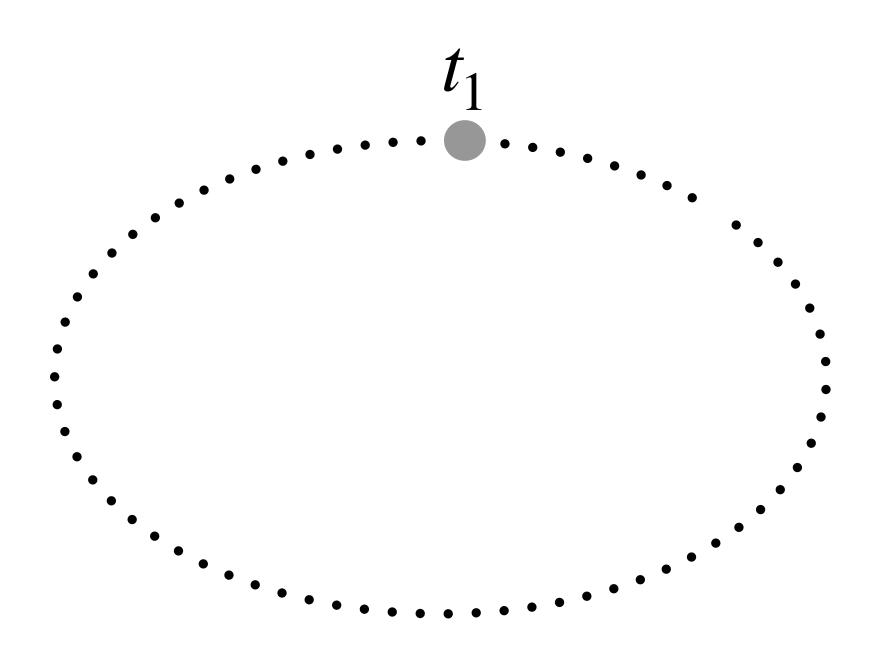
hard problem : given a tensor $T := [T_1, \dots, T_n]$, compute the rank of T

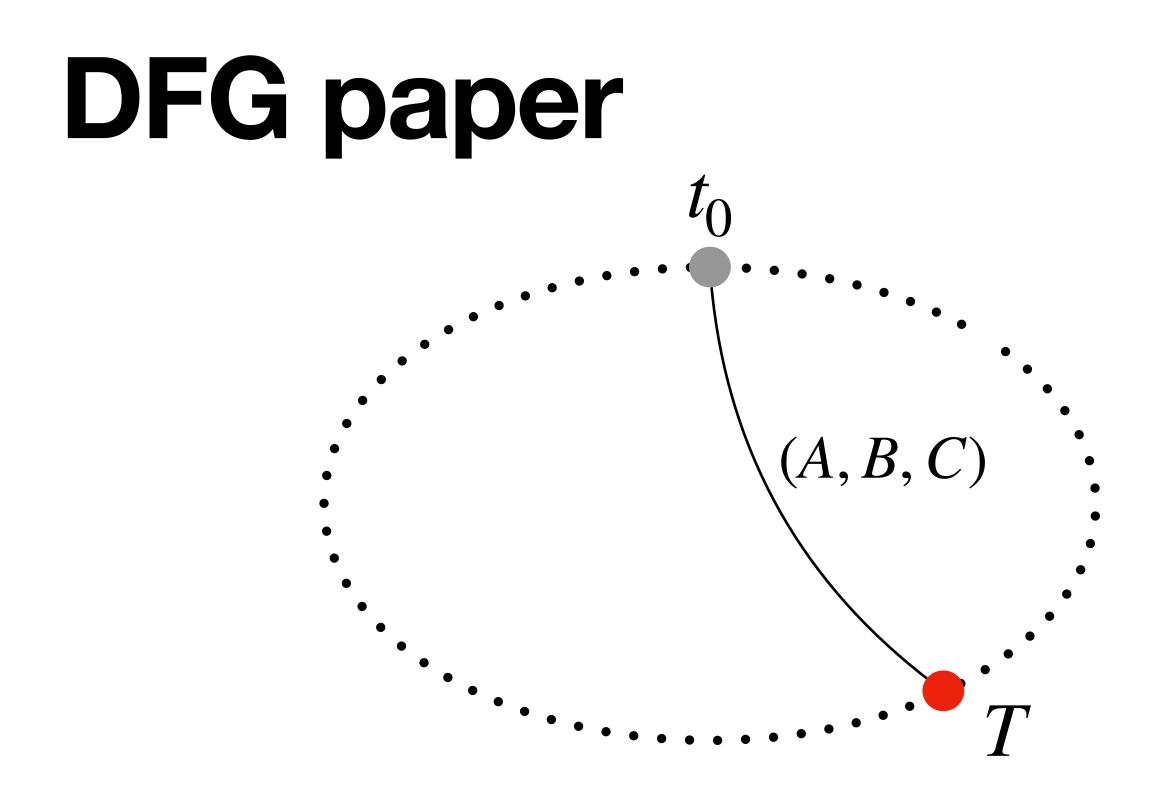
rank-*k* tensor :
$$\sum_{i=1}^{k} \mathbf{u}_i \otimes \mathbf{v}_i \otimes \mathbf{w}_i$$

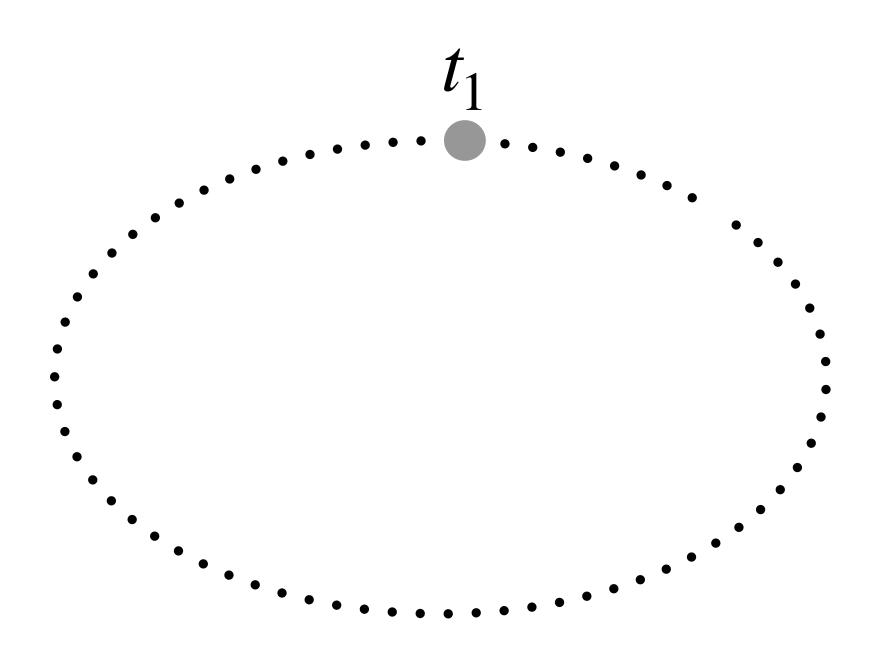
For random tensors, this problem is believed to be hard

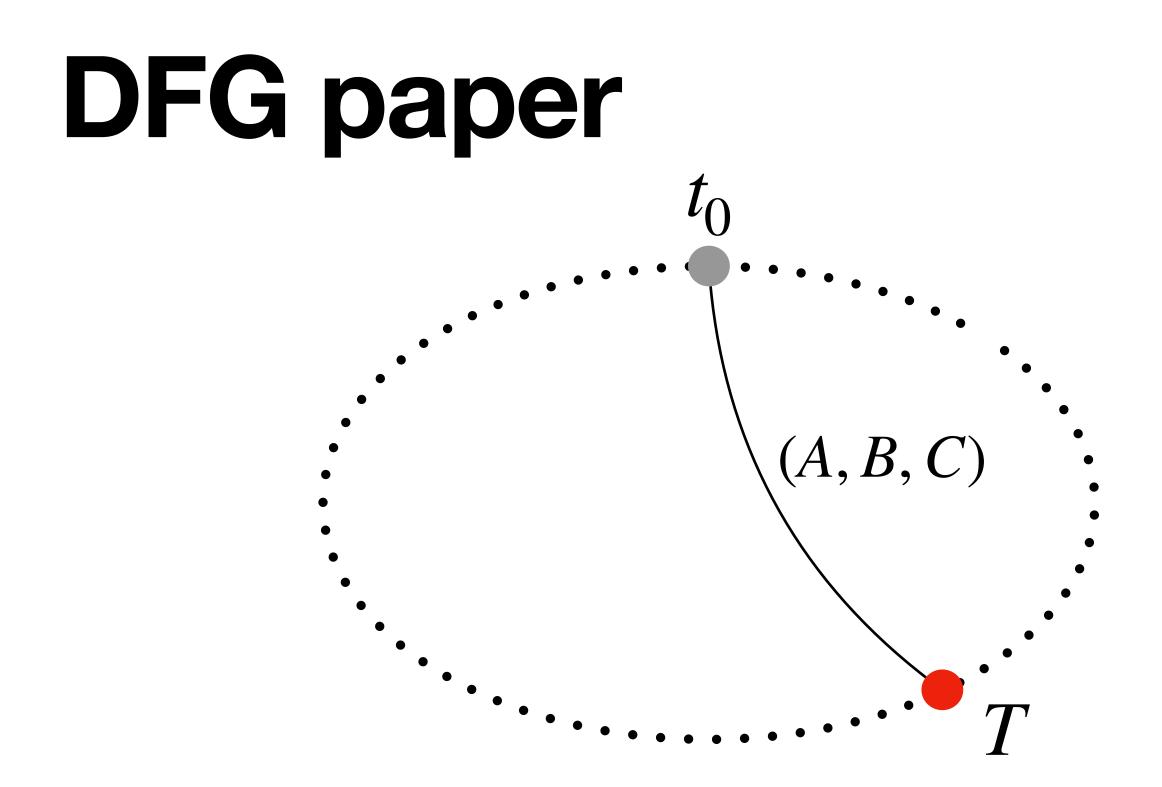


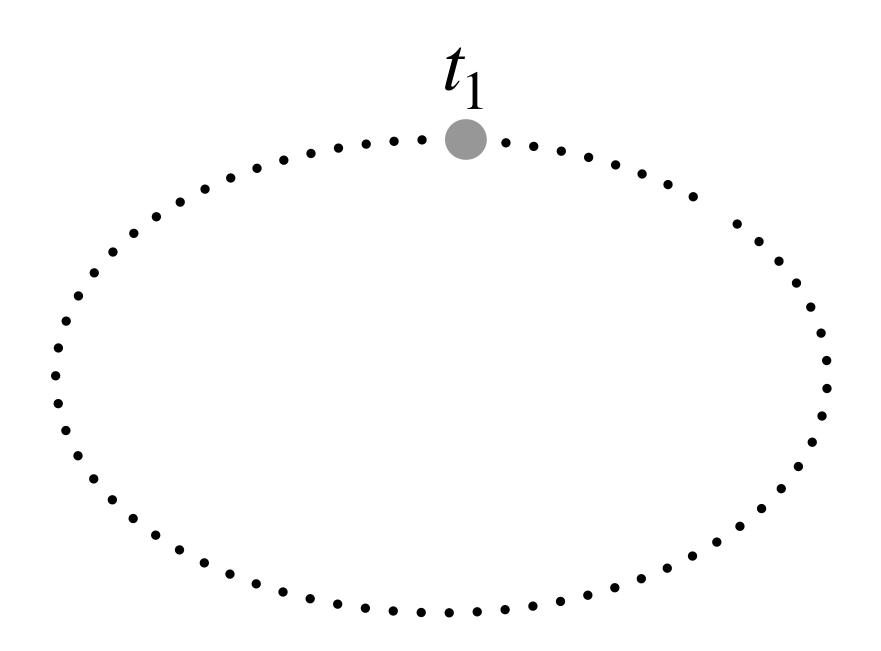




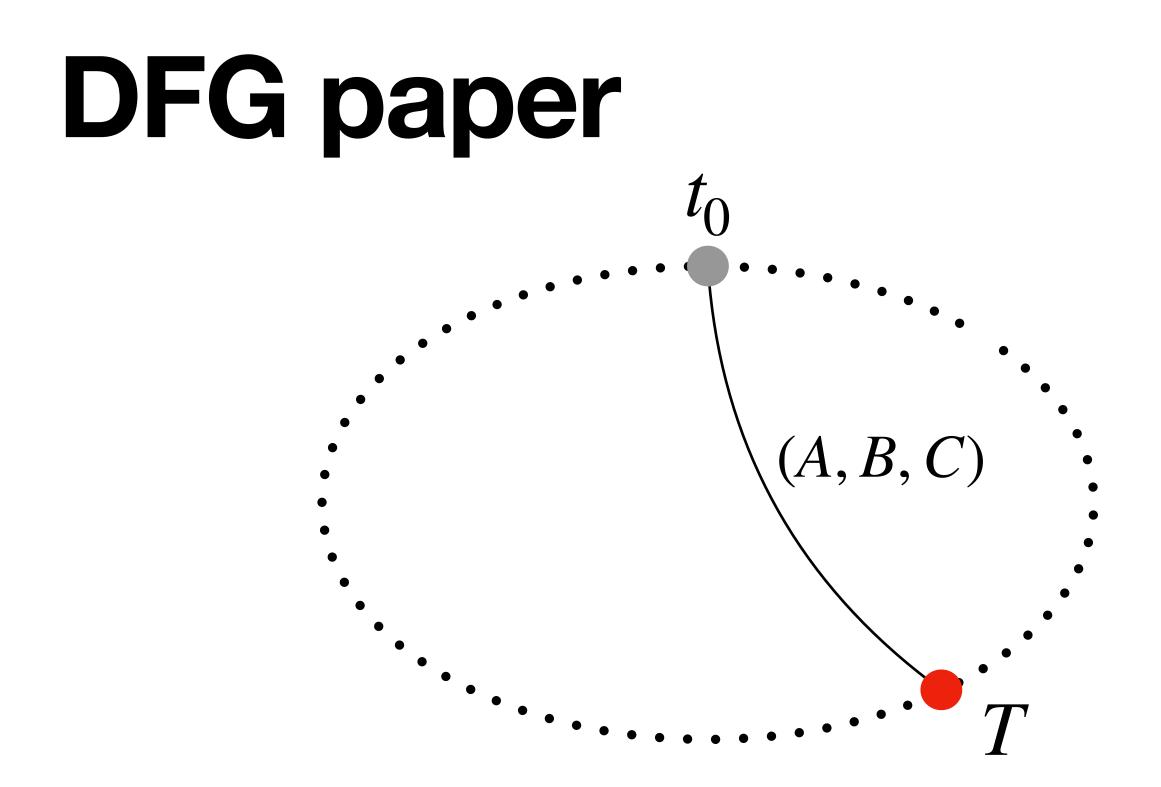




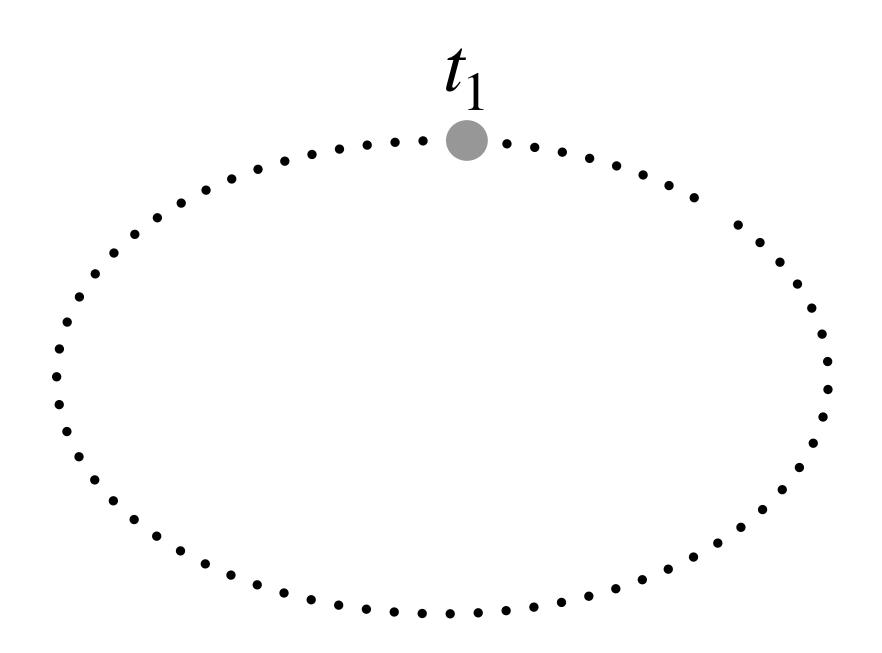




Lemma : $rank((A, B, C) \star t) = rank(t)$



-different ranks ensures this



Lemma : $rank((A, B, C) \star t) = rank(t)$

We need two tensors with different rank... but computing rank is hard...

We need two tensors with different rank... but computing rank is hard...

i = 1

$$t_{0} = \sum_{i=1}^{3} e_{i} \otimes e_{i} \otimes e_{i} \otimes e_{i} = \begin{bmatrix} 1\\0\\0 \end{bmatrix}$$
$$t_{1} = \sum_{i=1}^{2} e_{i} \otimes e_{i} \otimes e_{i} \otimes e_{i} = \begin{bmatrix} 1\\0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

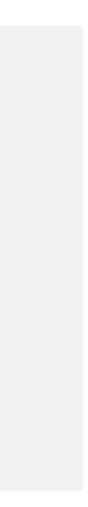
We need two tensors with different rank... but computing rank is hard...

$$t_{0} = \sum_{i=1}^{3} e_{i} \otimes e_{i} \otimes e_{i} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$t_{1} = \sum_{i=1}^{2} e_{i} \otimes e_{i} \otimes e_{i} \otimes e_{i} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$t_1 = \sum_{i=1}^2 e_i \otimes e_i \otimes e_i = \begin{bmatrix} 1\\0\\0 \end{bmatrix}$$

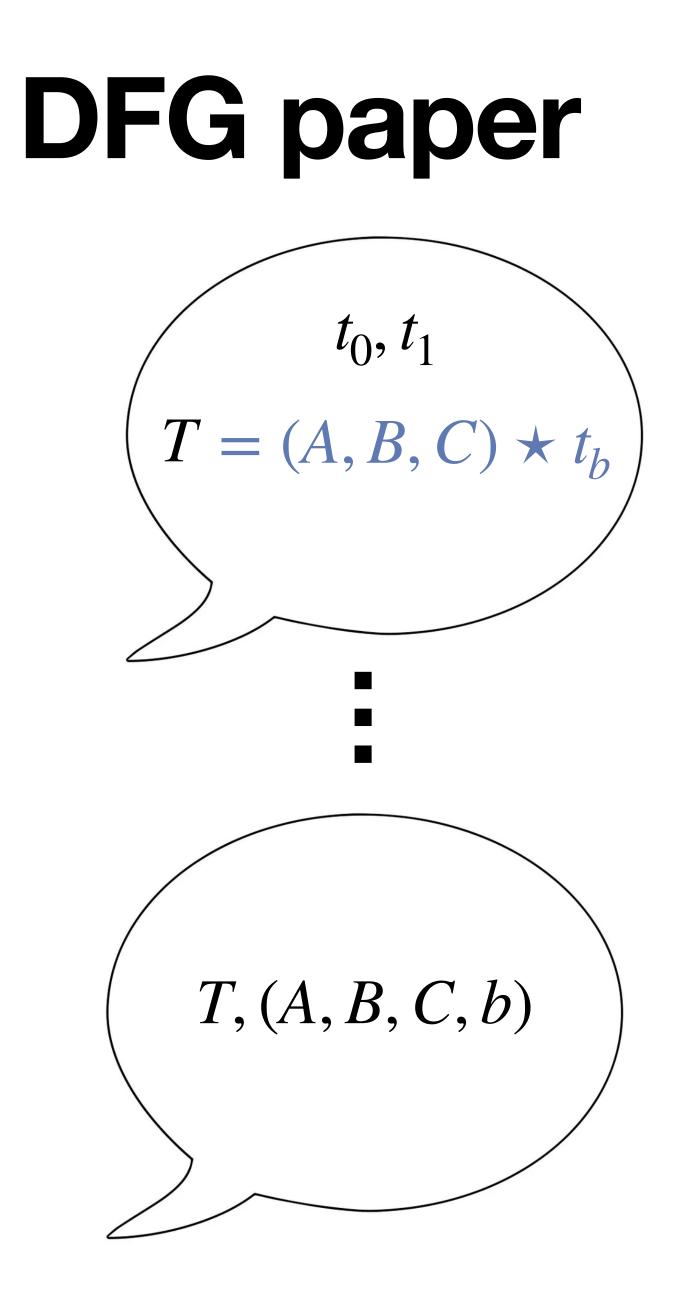
An example, over \mathbb{F}_7 : $\begin{pmatrix} \begin{bmatrix} 5 & 4 & 2 \\ 4 & 2 & 0 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 2 \\ 0 & 2 & 4 \end{bmatrix}, \begin{bmatrix} 5 & 2 & 3 \\ 2 & 1 & 1 \\ 5 & 4 & 2 \end{bmatrix}$

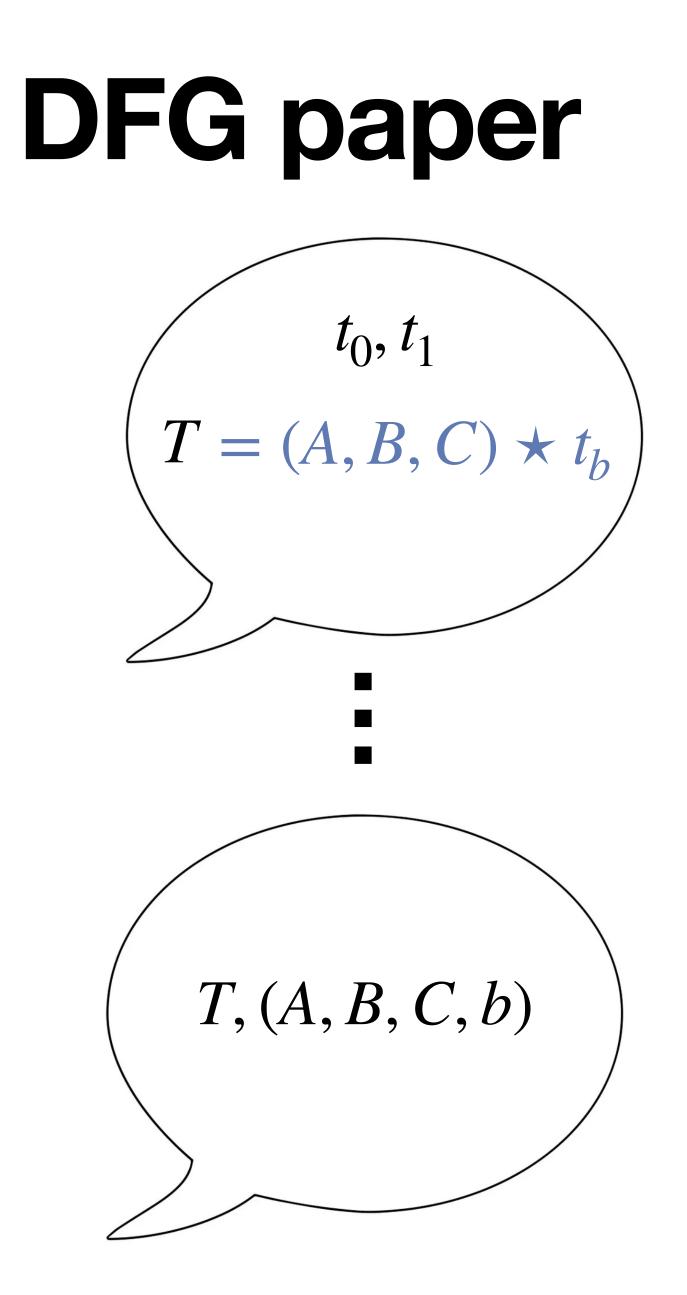
$$) \star t_1 = \begin{bmatrix} 4 & 3 & 4 \\ 3 & 5 & 6 \\ 2 & 1 & 4 \end{bmatrix}, \begin{bmatrix} 6 & 1 & 6 \\ 5 & 6 & 3 \\ 1 & 4 & 2 \end{bmatrix}, \begin{bmatrix} 5 & 2 & 5 \\ 6 & 3 & 5 \\ 4 & 2 & 1 \end{bmatrix}$$



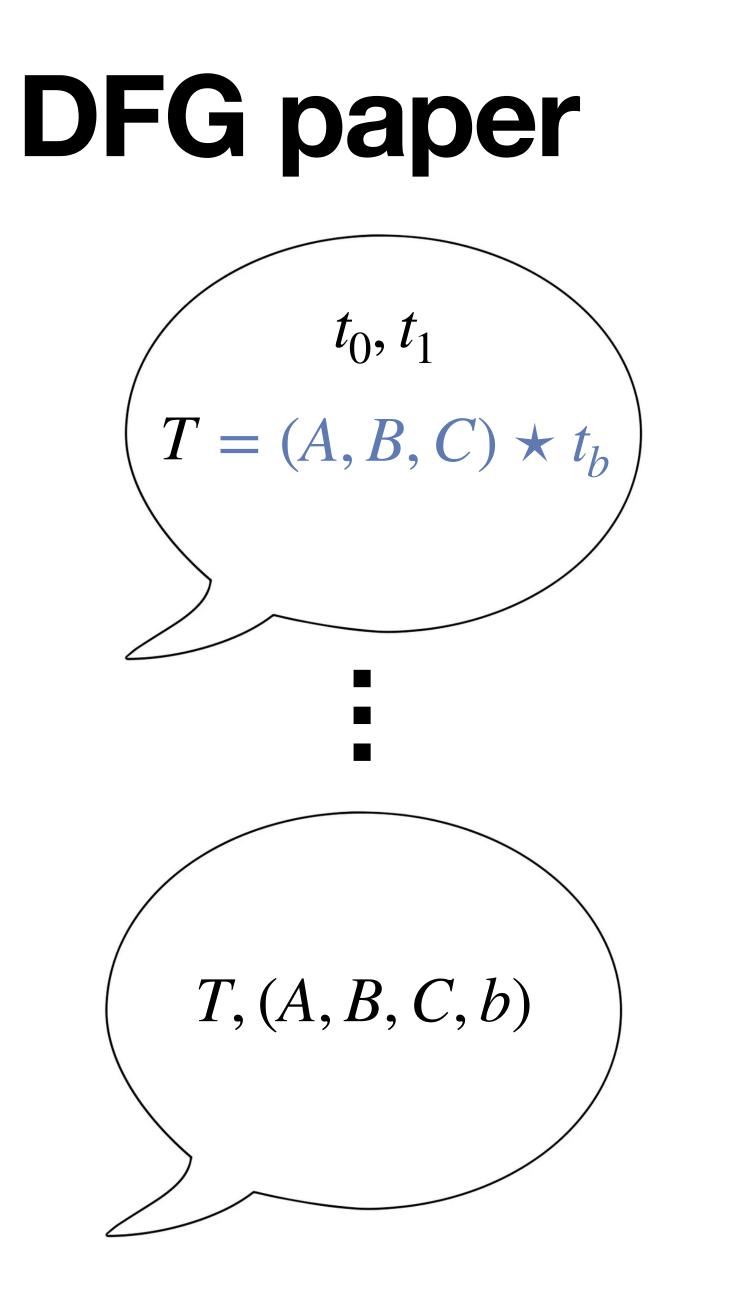
 $T = (A, B, C) \star t_b$

 $T = (A, B, C) \star t_b$



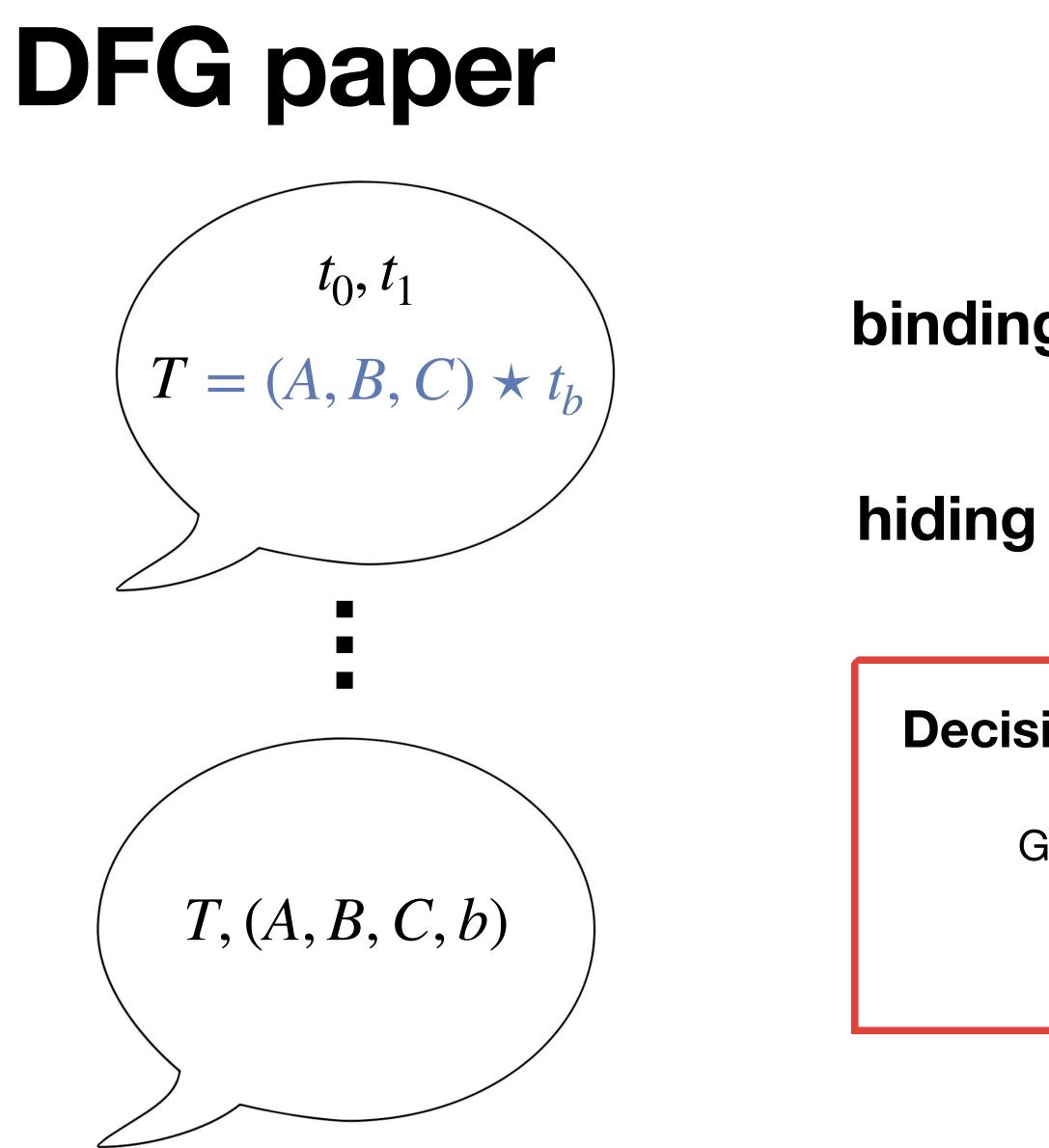


binding \rightarrow perfect



binding → perfect

hiding \rightarrow related to the dTIP



binding \rightarrow perfect

hiding \rightarrow related to the dTIP

Decisional Tensor Isomorphism Problem (dTIP):

Given random v_0 , v_1 decide whether there exists

(A, B, C) such that $(A, B, C) \star v_0 = v_1$

the rank of a point :

the rank of a point :

We say the rank of $\mathbf{u} = (u_1, \dots, u_n)$ in $T = [T_1, \dots, T_n]$ is exactly

 $rank(\mathbf{u})_{T}$

$T = [T_1, \dots, T_n]$ is exactly

$$T = rank(u_1T_1 + \cdots u_nT_n)$$

the rank of a point :

We say the rank of $\mathbf{u} = (u_1, \dots u_n)$ in T

 $rank(\mathbf{u})_T$

We will be concerned with points of rank 0

$$T = [T_1, \dots, T_n] \text{ is exactly}$$
$$T = rank(u_1T_1 + \dots + u_nT_n)$$

the rank of a point :

We say the rank of $\mathbf{u} = (u_1, \dots u_n)$ in T

 $rank(\mathbf{u})_{7}$

We will be concerned with points of rank 0

i.e. points u such that rank

$$T = [T_1, \dots, T_n] \text{ is exactly}$$
$$T = rank(u_1T_1 + \dots u_nT_n)$$

$$x(u_1T_1 + \cdots + u_nT_n) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Recall that

$t_0 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Recall that

So which **u** are such that rank(**u**

$t_0 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

$$\mathbf{u}_{t_0} = \begin{bmatrix} u_1 & 0 & 0 \\ 0 & u_2 & 0 \\ 0 & 0 & u_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}?$$

Recall that

So which **u** are such that rank(**u**

 t_0 only has the trivial rank 0 point :

$t_0 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

$$\mathbf{u}_{t_0} = \begin{bmatrix} u_1 & 0 & 0 \\ 0 & u_2 & 0 \\ 0 & 0 & u_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}?$$

$$\mathbf{u} = (0,0,0)$$

$t_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

 $rank(\mathbf{u})_{t_1} = \begin{bmatrix} u_1 & 0 \\ 0 & u_2 \\ 0 & 0 \end{bmatrix}$

$$\begin{bmatrix} 0 & 0 \\ u_2 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$t_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

 t_1 has one (non-trivial) rank 0 point :

$rank(\mathbf{u})_{t_1} = \begin{bmatrix} u_1 & 0 & 0 \\ 0 & u_2 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

scalar multiples of $\mathbf{u} = (0,0,1)$

So t_1 has one rank 0 point and t_0 has no rank 0 points

So t_1 has one rank 0 point and t_0 has no rank 0 points

Lemma : t_b and $(A, B, C) \star t_b$ have the same number of rank 0 points

So t_1 has one rank 0 point and t_0 has no rank 0 points

Lemma : t_b and $(A, B, C) \star t_b$ have the same number of rank 0 points

Thus, given some commitment, $T = (A, B, C) \star t_h$,

if T has **no rank 0 points**, then b = 0if T has one rank 0 point (up to scalar multiplication), then b = 1

So t_1 has one rank 0 point and t_0 has no rank 0 points

Lemma : t_b and $(A, B, C) \star t_b$ have the same number of rank 0 points

Thus, given some commitment, T = (A, B)

if T has **no rank 0 points**, then b = 0if T has one rank 0 point (up to scalar multiplication), then b = 1

$$(B, C) \star t_b,$$

Computing the rank 0 points in T requires solving n^2 linear equations in n variables

So t_1 has one rank 0 point and t_0 has no rank 0 points

Lemma : t_b and $(A, B, C) \star t_b$ have the same number of rank 0 points

Thus, given some commitment, $T = (A, B, C) \star t_b$,

if T has **no rank 0 points**, then b = 0if T has one rank 0 point (up to scalar multiplication), then b = 1

Computing the rank 0 points in T requires solving n^2 linear equations in n variables

Parameters

n	q
14	4093
22	4093
30	2039

No parameters were given in DFG.

These parameters were taken from MEDS.

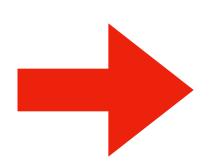
Parameters

n	q
14	4093
22	4093
30	2039

No parameters were given in DFG.

These parameters were taken from MEDS.

Distinguishing attack:



 \rightarrow Runtime < 1 second

This attack broke hiding and a special case of dTIP

Decisional Tensor Isomorphism Problem (dTIP):

- Given **random** v_0 , v_1 **decide** whether there exists
 - (A, B, C) such that $(A, B, C) \star v_0 = v_1$

This attack broke hiding and a special case of dTIP

Decisional Tensor Isomorphism Problem (dTIP):

(A, B, C) such that $(A, B, C) \star v_0 = v_1$

What about cTIP?

Computational Tensor Isomorphism Problem (cTIP):

Given random v_0, v_1 compute

(A, B, C) such that $(A, B, C) \star v_0 = v_1$

Given random v_0 , v_1 decide whether there exists

Suppose we have determined b = 0, let's recover (A, B, C) from $T = (A, B, C) \star t_0$

A first attempt : Gröbner basis?

Suppose we have determined b = 0, let's recover (A, B, C) from $T = (A, B, C) \star t_0$

A first attempt : Gröbner basis?

We can use a *Gröbner basis* to solve systems of multivariate polynomials

 \rightarrow uses Buchberger's algorithm

 \rightarrow manipulates the polynomials to eventually apply Gaussian elimination

Suppose we have determined b = 0, let's recover (A, B, C) from $T = (A, B, C) \star t_0$

 $T = (A, B, C) \star t_0$

$T = (A, B, C) \star t_0$

 $T = \left(\begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{bmatrix}, \begin{bmatrix} b_{1,1} & b_{1,2} & b_{1,3} \\ b_{2,1} & b_{2,2} & b_{2,3} \\ b_{3,1} & b_{3,2} & b_{3,3} \end{bmatrix}, \begin{bmatrix} c_{1,1} & c_{1,2} & c_{1,3} \\ c_{2,1} & c_{2,2} & c_{2,3} \\ c_{3,1} & c_{3,2} & c_{3,3} \end{bmatrix} \right) \star t_0$

$T = (A, B, C) \star t_0$

 $T = \left(\begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{bmatrix}, \begin{bmatrix} b_{1,1} & b_{1,2} & b_{1,3} \\ b_{2,1} & b_{2,2} & b_{2,3} \\ b_{3,1} & b_{3,2} & b_{3,3} \end{bmatrix}, \begin{bmatrix} c_{1,1} & c_{1,2} & c_{1,3} \\ c_{2,1} & c_{2,2} & c_{2,3} \\ c_{3,1} & c_{3,2} & c_{3,3} \end{bmatrix} \right) \star t_0 \qquad \rightarrow 3n^2 \text{ variables}$

$T = (A, B, C) \star t_0$

 $T = \left(\begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{bmatrix}, \begin{bmatrix} b_{1,1} & b_{1,2} & b_{1,3} \\ b_{2,1} & b_{2,2} & b_{2,3} \\ b_{3,1} & b_{3,2} & b_{3,3} \end{bmatrix}, \begin{bmatrix} a_{2,2} & b_{2,3} \\ b_{3,1} & b_{3,2} & b_{3,3} \end{bmatrix}, \begin{bmatrix} a_{2,2} & b_{2,3} \\ b_{3,1} & b_{3,2} & b_{3,3} \end{bmatrix}, \begin{bmatrix} a_{2,2} & b_{2,3} \\ b_{3,1} & b_{3,2} & b_{3,3} \end{bmatrix}, \begin{bmatrix} a_{2,2} & b_{2,3} \\ b_{3,1} & b_{3,2} & b_{3,3} \end{bmatrix}, \begin{bmatrix} a_{2,3} & b_{3,3} \\ b_{3,1} & b_{3,2} & b_{3,3} \end{bmatrix}, \begin{bmatrix} a_{3,3} & b_{3,3} & b_{3,3} \\ b_{3,1} & b_{3,2} & b_{3,3} \end{bmatrix}, \begin{bmatrix} a_{3,3} & b_{3,3} & b_{3,3} \\ b_{3,1} & b_{3,2} & b_{3,3} \end{bmatrix}, \begin{bmatrix} a_{3,3} & b_{3,3} & b_{3,3} \\ b_{3,1} & b_{3,2} & b_{3,3} \end{bmatrix}, \begin{bmatrix} a_{3,3} & b_{3,3} & b_{3,3} \\ b_{3,1} & b_{3,2} & b_{3,3} \end{bmatrix}, \begin{bmatrix} a_{3,3} & b_{3,3} & b_{3,3} \\ b_{3,1} & b_{3,2} & b_{3,3} \end{bmatrix}, \begin{bmatrix} a_{3,3} & b_{3,3} & b_{3,3} \\ b_{3,1} & b_{3,2} & b_{3,3} \end{bmatrix}, \begin{bmatrix} a_{3,3} & b_{3,3} & b_{3,3} \\ b_{3,3} & b_{3,3} & b_{3,3} \end{bmatrix}, \begin{bmatrix} a_{3,3} & b_{3,3} & b_{3,3} \\ b_{3,3} & b_{3,3} & b_{3,3} \end{bmatrix}, \begin{bmatrix} a_{3,3} & b_{3,3} & b_{3,3} \\ b_{3,3} & b_{3,3} & b_{3,3} \end{bmatrix}, \begin{bmatrix} a_{3,3} & b_{3,3} & b_{3,3} \\ b_{3,3} & b_{3,3} & b_{3,3} \end{bmatrix}, \begin{bmatrix} a_{3,3} & b_{3,3} & b_{3,3} \\ b_{3,3} & b_{3,3} & b_{3,3} \end{bmatrix}, \begin{bmatrix} a_{3,3} & b_{3,3} & b_{3,3} \\ b_{3,3} & b_{3,3} & b_{3,3} \end{bmatrix}, \begin{bmatrix} a_{3,3} & b_{3,3} & b_{3,3} \\ b_{3,3} & b_{3,3} & b_{3,3} \end{bmatrix}, \begin{bmatrix} a_{3,3} & b_{3,3} & b_{3,3} & b_{3,3} \\ b_{3,3} & b_{3,3} & b_{3,3} & b_{3,3} \end{bmatrix}, \begin{bmatrix} a_{3,3} & b_{3,3} & b_{3,3} & b_{3,3} \\ b_{3,3} & b_{3,3} & b_{3,3} & b_{3,3} \end{bmatrix}, \begin{bmatrix} a_{3,3} & b_{3,3} & b_{3,3} & b_{3,3} \\ b_{3,3} & b_{3,3} & b_{3,3} & b_{3,3} & b_{3,3} \\ b_{3,3} & b_{3,3} & b_{3,3} & b_{3,3} & b_{3,3} & b_{3,3} & b_{3,3} \\ b_{3,3} & b_{3,3} \\ b_{3,3} & b_{3,3} &$

$$\begin{bmatrix} c_{1,1} & c_{1,2} & c_{1,3} \\ c_{2,1} & c_{2,2} & c_{2,3} \\ c_{3,1} & c_{3,2} & c_{3,3} \end{bmatrix} \end{pmatrix} \star t_0$$

$$\rightarrow 3n^2$$
 variables
 $\rightarrow 3n^2$ equations

$T = (A, B, C) \star t_0$

 $T = \left(\begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{bmatrix}, \begin{bmatrix} b_{1,1} & b_{1,2} & b_{1,3} \\ b_{2,1} & b_{2,2} & b_{2,3} \\ b_{3,1} & b_{3,2} & b_{3,3} \end{bmatrix}, \begin{bmatrix} a_{2,2} & b_{2,3} \\ b_{3,1} & b_{3,2} & b_{3,3} \end{bmatrix}, \begin{bmatrix} a_{2,2} & b_{2,3} \\ b_{3,1} & b_{3,2} & b_{3,3} \end{bmatrix}, \begin{bmatrix} a_{2,3} & b_{3,3} \\ b_{3,1} & b_{3,2} & b_{3,3} \end{bmatrix}, \begin{bmatrix} a_{2,3} & b_{3,3} \\ b_{3,1} & b_{3,2} & b_{3,3} \end{bmatrix}, \begin{bmatrix} a_{2,3} & b_{3,3} \\ b_{3,1} & b_{3,2} & b_{3,3} \end{bmatrix}, \begin{bmatrix} a_{3,3} & b_{3,3} \\ b_{3,1} & b_{3,2} & b_{3,3} \end{bmatrix}, \begin{bmatrix} a_{3,3} & b_{3,3} \\ b_{3,1} & b_{3,2} & b_{3,3} \end{bmatrix}, \begin{bmatrix} a_{3,3} & b_{3,3} \\ b_{3,1} & b_{3,2} & b_{3,3} \end{bmatrix}, \begin{bmatrix} a_{3,3} & b_{3,3} \\ b_{3,1} & b_{3,2} & b_{3,3} \end{bmatrix}, \begin{bmatrix} a_{3,3} & b_{3,3} \\ b_{3,1} & b_{3,2} & b_{3,3} \end{bmatrix}, \begin{bmatrix} a_{3,3} & b_{3,3} \\ b_{3,3} & b_{3,3} & b_{3,3} \end{bmatrix}, \begin{bmatrix} a_{3,3} & b_{3,3} \\ b_{3,3} & b_{3,3} & b_{3,3} \end{bmatrix}, \begin{bmatrix} a_{3,3} & b_{3,3} \\ b_{3,3} & b_{3,3} & b_{3,3} \end{bmatrix}, \begin{bmatrix} a_{3,3} & b_{3,3} \\ b_{3,3} & b_{3,3} & b_{3,3} \end{bmatrix}, \begin{bmatrix} a_{3,3} & b_{3,3} \\ b_{3,3} & b_{3,3} & b_{3,3} \end{bmatrix}, \begin{bmatrix} a_{3,3} & b_{3,3} \\ b_{3,3} & b_{3,3} & b_{3,3} \end{bmatrix}, \begin{bmatrix} a_{3,3} & b_{3,3} \\ b_{3,3} & b_{3,3} & b_{3,3} \end{bmatrix}, \begin{bmatrix} a_{3,3} & b_{3,3} \\ b_{3,3} & b_{3,3} & b_{3,3} \end{bmatrix}, \begin{bmatrix} a_{3,3} & b_{3,3} \\ b_{3,3} & b_{3,3} & b_{3,3} \end{bmatrix}, \begin{bmatrix} a_{3,3} & b_{3,3} & b_{3,3} \\ b_{3,3} & b_{3,3} & b_{3,3} \end{bmatrix}, \begin{bmatrix} a_{3,3} & b_{3,3} & b_{3,3} \\ b_{3,3} & b_{3,3} & b_{3,3} \end{bmatrix}, \begin{bmatrix} a_{3,3} & b_{3,3} & b_{3,3} \\ b_{3,3} & b_{3,3} & b_{3,3} & b_{3,3} \end{bmatrix}, \begin{bmatrix} a_{3,3} & b_{3,3} & b_{3,3} & b_{3,3} \\ b_{3,3} & b_{3,3} & b_{3,3} & b_{3,3} & b_{3,3} \end{bmatrix}, \begin{bmatrix} a_{3,3} & b_{3,3} & b_{3,3} & b_{3,3} \\ b_{3,3} & b_{3,3} &$

$$\begin{bmatrix} c_{1,1} & c_{1,2} & c_{1,3} \\ c_{2,1} & c_{2,2} & c_{2,3} \\ c_{3,1} & c_{3,2} & c_{3,3} \end{bmatrix} \star t_0$$

 $\rightarrow 3n^2$ variables $\rightarrow 3n^2$ equations \rightarrow **cubic** equations

$T = (A, B, C) \star t_0$

$T = \left(\begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{bmatrix}, \begin{bmatrix} b_{1,1} & b_{1,2} & b_{1,3} \\ b_{2,1} & b_{2,2} & b_{2,3} \\ b_{3,1} & b_{3,2} & b_{3,3} \end{bmatrix}, \begin{bmatrix} b_{1,1} & b_{1,2} & b_{1,3} \\ b_{2,1} & b_{2,2} & b_{2,3} \\ b_{3,1} & b_{3,2} & b_{3,3} \end{bmatrix}, \begin{bmatrix} b_{1,1} & b_{1,2} & b_{1,3} \\ b_{2,1} & b_{2,2} & b_{2,3} \\ b_{3,1} & b_{3,2} & b_{3,3} \end{bmatrix}, \begin{bmatrix} b_{1,1} & b_{1,2} & b_{1,3} \\ b_{2,1} & b_{2,2} & b_{2,3} \\ b_{3,1} & b_{3,2} & b_{3,3} \end{bmatrix}, \begin{bmatrix} b_{1,1} & b_{1,2} & b_{1,3} \\ b_{2,1} & b_{2,2} & b_{2,3} \\ b_{3,1} & b_{3,2} & b_{3,3} \end{bmatrix}, \begin{bmatrix} b_{1,1} & b_{1,2} & b_{1,3} \\ b_{2,1} & b_{2,2} & b_{2,3} \\ b_{3,1} & b_{3,2} & b_{3,3} \end{bmatrix}, \begin{bmatrix} b_{1,1} & b_{1,2} & b_{1,3} \\ b_{2,1} & b_{2,2} & b_{2,3} \\ b_{3,1} & b_{3,2} & b_{3,3} \end{bmatrix}, \begin{bmatrix} b_{1,1} & b_{1,2} & b_{1,3} \\ b_{2,1} & b_{2,2} & b_{2,3} \\ b_{3,1} & b_{3,2} & b_{3,3} \end{bmatrix}, \begin{bmatrix} b_{1,1} & b_{1,2} & b_{1,3} \\ b_{2,1} & b_{2,2} & b_{2,3} \\ b_{3,1} & b_{3,2} & b_{3,3} \end{bmatrix}, \begin{bmatrix} b_{1,1} & b_{1,2} & b_{1,3} \\ b_{2,1} & b_{2,2} & b_{2,3} \\ b_{3,1} & b_{3,2} & b_{3,3} \end{bmatrix}, \begin{bmatrix} b_{1,1} & b_{1,2} & b_{1,3} \\ b_{2,1} & b_{2,2} & b_{2,3} \\ b_{3,1} & b_{3,2} & b_{3,3} \end{bmatrix}, \begin{bmatrix} b_{1,1} & b_{1,2} & b_{1,3} \\ b_{2,1} & b_{2,2} & b_{2,3} \\ b_{3,1} & b_{3,2} & b_{3,3} \end{bmatrix}, \begin{bmatrix} b_{1,1} & b_{1,2} & b_{2,3} \\ b_{2,1} & b_{2,2} & b_{2,3} \\ b_{3,1} & b_{3,2} & b_{3,3} \end{bmatrix}, \begin{bmatrix} b_{1,1} & b_{1,2} & b_{2,3} \\ b_{2,1} & b_{2,2} & b_{2,3} \\ b_{3,1} & b_{3,2} & b_{3,3} \end{bmatrix}, \begin{bmatrix} b_{1,1} & b_{1,2} & b_{2,3} \\ b_{2,1} & b_{2,2} & b_{2,3} \\ b_{3,1} & b_{3,2} & b_{3,3} \end{bmatrix}, \begin{bmatrix} b_{1,1} & b_{1,2} & b_{2,3} \\ b_{2,1} & b_{2,2} & b_{2,3} \\ b_{2,2} & b_{2,3} & b_{3,3} \end{bmatrix}, \begin{bmatrix} b_{1,2} & b_{2,2} & b_{2,3} \\ b_{2,2} & b_{2,3} & b_{3,3} \end{bmatrix}, \begin{bmatrix} b_{1,2} & b_{2,3} & b_{3,3} \\ b_{3,1} & b_{3,2} & b_{3,3} \end{bmatrix}, \begin{bmatrix} b_{1,2} & b_{2,3} & b_{3,3} \\ b_{3,1} & b_{3,2} & b_{3,3} \end{bmatrix}, \begin{bmatrix} b_{1,2} & b_{1,3} & b_{2,3} & b_{3,3} \\ b_{2,2} & b_{2,3} & b_{3,3} \end{bmatrix}, \begin{bmatrix} b_{1,2} & b_{2,3} & b_{3,3} & b_{3,3} \\ b_{3,1} & b_{3,2} & b_{3,3} \end{bmatrix}, \begin{bmatrix} b_{1,2} & b_{1,3} & b_{2,3} & b_{3,3} \\ b_{3,3} & b_{3,3} & b_{3,3} & b_{3,3} \\ b_{3,3} & b_{3,3} & b_{3,3} & b_{3,3} \end{bmatrix}$

$$\begin{bmatrix} c_{1,1} & c_{1,2} & c_{1,3} \\ c_{2,1} & c_{2,2} & c_{2,3} \\ c_{3,1} & c_{3,2} & c_{3,3} \end{bmatrix} \end{pmatrix} \star t_0 \qquad \rightarrow 3n^2 \text{ equations}$$
$$\rightarrow \text{cubic equations}$$

Upon first try, our instance has too many solutions...

How can we reduce the number of solutions?

How can we reduce the number of solutions?

The stabilizer group of t_0 is matrix triples (M_1, M_2, M_3) such that

$(M_1, M_2, M_3) \star t_0 = t_0$

How can we reduce the number of solutions?

The stabilizer group of t_0 is matrix triples (M_1, M_2, M_3) such that

Some examples of stabilizer elements include :

$(M_1, M_2, M_3) \star t_0 = t_0$

How can we reduce the number of solutions?

The stabilizer group of t_0 is matrix triples (M_1, M_2, M_3) such that

Some examples of stabilizer elements include :

$$\begin{bmatrix} \lambda_a & 0 & 0 \\ 0 & \lambda_a & 0 \\ 0 & 0 & \lambda_a \end{bmatrix} \cdot \begin{bmatrix} \lambda_b & 0 & 0 \\ 0 & \lambda_b & 0 \\ 0 & 0 & \lambda_b \end{bmatrix} \cdot \begin{bmatrix} \lambda_c & 0 & 0 \\ 0 & \lambda_c & 0 \\ 0 & 0 & \lambda_c \end{bmatrix} = I$$

$(M_1, M_2, M_3) \star t_0 = t_0$

How can we reduce the number of solutions?

The stabilizer group of t_0 is matrix triples (M_1, M_2, M_3) such that

Some examples of stabilizer elements include :

$$\begin{bmatrix} \lambda_a & 0 & 0 \\ 0 & \lambda_a & 0 \\ 0 & 0 & \lambda_a \end{bmatrix} \cdot \begin{bmatrix} \lambda_b & 0 & 0 \\ 0 & \lambda_b & 0 \\ 0 & 0 & \lambda_b \end{bmatrix} \cdot \begin{bmatrix} \lambda_c & 0 & 0 \\ 0 & \lambda_c & 0 \\ 0 & 0 & \lambda_c \end{bmatrix} = I$$

$(M_1, M_2, M_3) \star t_0 = t_0$

any permutation matrices (P, P, P), 1 0 0 e.g.

By identifying stabilizer elements, we were able to filter out possibilities for (A, B, C)

Note, t_0 has exactly *n* rank 1 points, and thus so does $T = (A, B, C) \star t_0$

By identifying stabilizer elements, we were able to filter out possibilities for (A, B, C)

By identifying stabilizer elements, we were able to filter out possibilities for (A, B, C)

Note, t_0 has exactly *n* rank 1 points, and thus so does $T = (A, B, C) \star t_0$

Lemma : the rows of A^{-1} are all rank 1 points

By identifying stabilizer elements, we were able to filter out possibilities for (A, B, C)

Note, t_0 has exactly *n* rank 1 points, and thus so does $T = (A, B, C) \star t_0$

Lemma : the rows of A^{-1} are all rank 1 points

To find candidates for *B* and *C* we can solve

the (linear) set of equations given by

$$(I, B, I) \star t_0 = (A^{-1}, I, C^{-1}) \star T$$

By identifying stabilizer elements, we were able to filter out possibilities for (A, B, C)

Note, t_0 has exactly *n* rank 1 points, and thus so does $T = (A, B, C) \star t_0$

Lemma : the rows of A^{-1} are all rank 1 points

To find candidates for *B* and *C* we can solve

the (linear) set of equations given by

$$(I, B, I) \star t_0 = (A^{-1}, I, C^{-1}) \star T$$

n	9	Time (s)
14	4093	9.3
22	4093	141.6
30	2039	858.9

Runtime for the attack:

There was only 1 rank-0 matrix: $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

There was only 1 rank-0 matrix: $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

Already for rank 1, there are too many matrices to check...

There was only 1 rank-0 matrix: $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

Already for rank 1, there are too many matrices to check...

MinRank:

rank $\begin{pmatrix} x_1 M_1 + \end{pmatrix}$

Given an integer $r \in \mathbb{N}$ and k matrices $M_1, \ldots M_k$, find integers $x_1, \ldots x_k$ (not all zero) such that

$$\dots + x_k M_k \bigg) \leq r$$

We used the following work (AsiaCrypt 2020):

Improvements of Algebraic Attacks for solving the Rank Decoding and MinRank problems

Magali Bardet^{4,5}, Maxime Bros¹, Daniel Cabarcas⁶, Philippe Gaborit¹, Ray Perlner², Daniel Smith-Tone^{2,3}, Jean-Pierre Tillich⁴, and Javier Verbel⁶

¹ Univ. Limoges, CNRS, XLIM, UMR 7252, F-87000 Limoges, France maxime.bros@unilim.fr

- $^{2}\,$ National Institute of Standards and Technology, USA ³ University of Louisville, USA
 - ⁴ Inria, 2 rue Simone Iff, 75012 Paris, France
 - ⁵ LITIS, University of Rouen Normandie, France
- ⁶ Universidad Nacional de Colombia Sede Medellín, Medellín, Colombia

Abstract. In this paper, we show how to significantly improve algebraic techniques for solving the MinRank problem, which is ubiquitous in multivariate and rank metric code based cryptography. In the case of

We used the following work (AsiaCrypt 2020):

Improvements of Algebraic Attacks for solving the Rank Decoding and MinRank problems

Magali Bardet^{4,5}, Maxime Bros¹, Daniel Cabarcas⁶, Philippe Gaborit¹, Ray Perlner², Daniel Smith-Tone^{2,3}, Jean-Pierre Tillich⁴, and Javier Verbel⁶

¹ Univ. Limoges, CNRS, XLIM, UMR 7252, F-87000 Limoges, France maxime.bros@unilim.fr

- ² National Institute of Standards and Technology, USA ³ University of Louisville, USA
 - ⁴ Inria, 2 rue Simone Iff, 75012 Paris, France
 - ⁵ LITIS, University of Rouen Normandie, France
- ⁶ Universidad Nacional de Colombia Sede Medellín, Medellín, Colombia

Abstract. In this paper, we show how to significantly improve algebraic techniques for solving the MinRank problem, which is ubiquitous in multivariate and rank metric code based cryptography. In the case of

\rightarrow we were able to solve with direct linearization

We used the following work (AsiaCrypt 2020):

Improvements of Algebraic Attacks for solving the Rank Decoding and MinRank problems

Magali Bardet^{4,5}, Maxime Bros¹, Daniel Cabarcas⁶, Philippe Gaborit¹, Ray Perlner², Daniel Smith-Tone^{2,3}, Jean-Pierre Tillich⁴, and Javier Verbel⁶

¹ Univ. Limoges, CNRS, XLIM, UMR 7252, F-87000 Limoges, France maxime.bros@unilim.fr

- ² National Institute of Standards and Technology, USA ³ University of Louisville, USA
 - ⁴ Inria, 2 rue Simone Iff, 75012 Paris, France
 - ⁵ LITIS, University of Rouen Normandie, France
- ⁶ Universidad Nacional de Colombia Sede Medellín, Medellín, Colombia

Abstract. In this paper, we show how to significantly improve algebraic techniques for solving the MinRank problem, which is ubiquitous in multivariate and rank metric code based cryptography. In the case of

\rightarrow we were able to solve with direct linearization

\rightarrow for r > 1 the complexity quickly increases

 \rightarrow tensors in different orbits

 \rightarrow tensors in different orbits

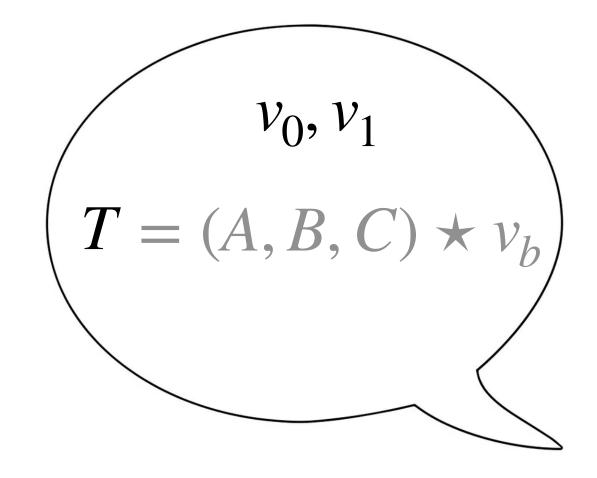
 \rightarrow no low rank points

 \rightarrow tensors in different orbits

 \rightarrow no low rank points

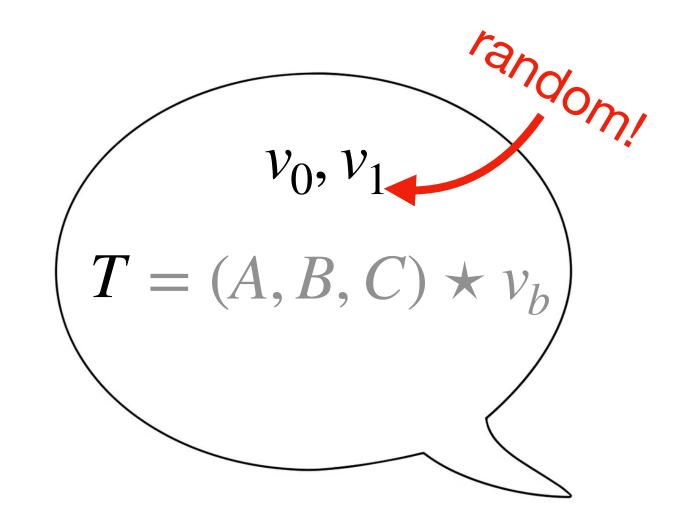
 \rightarrow tensors in different orbits

 \rightarrow no low rank points



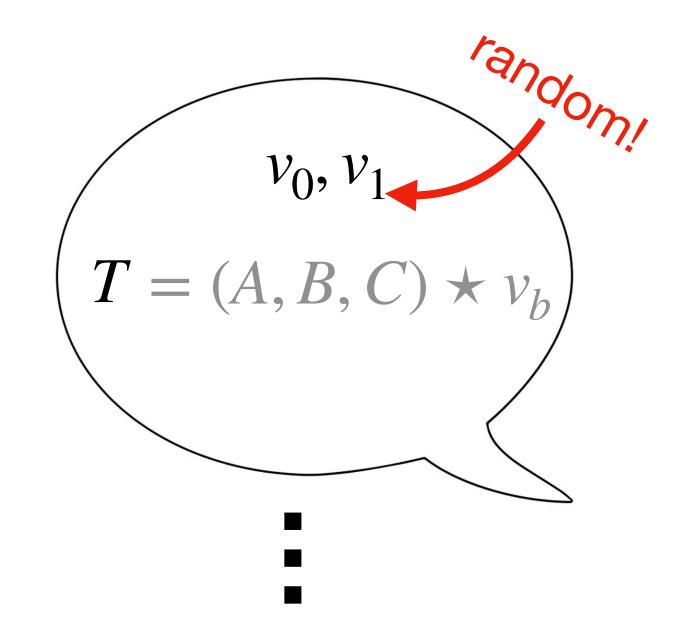
 \rightarrow tensors in different orbits

 \rightarrow no low rank points



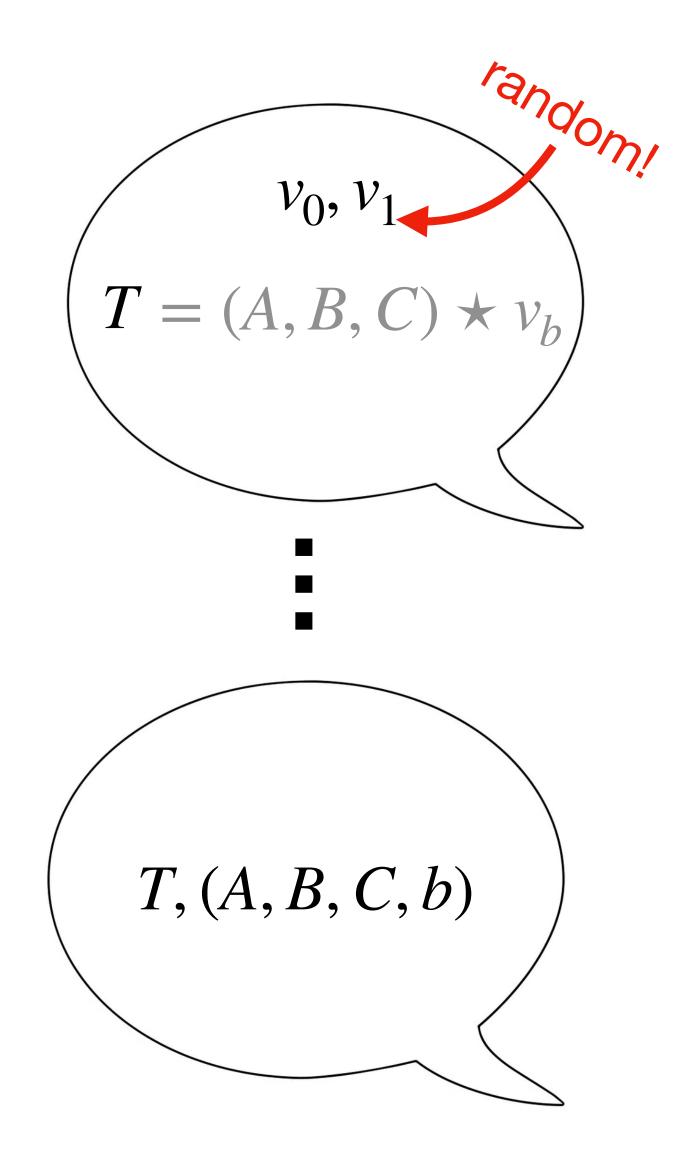
 \rightarrow tensors in different orbits

 \rightarrow no low rank points

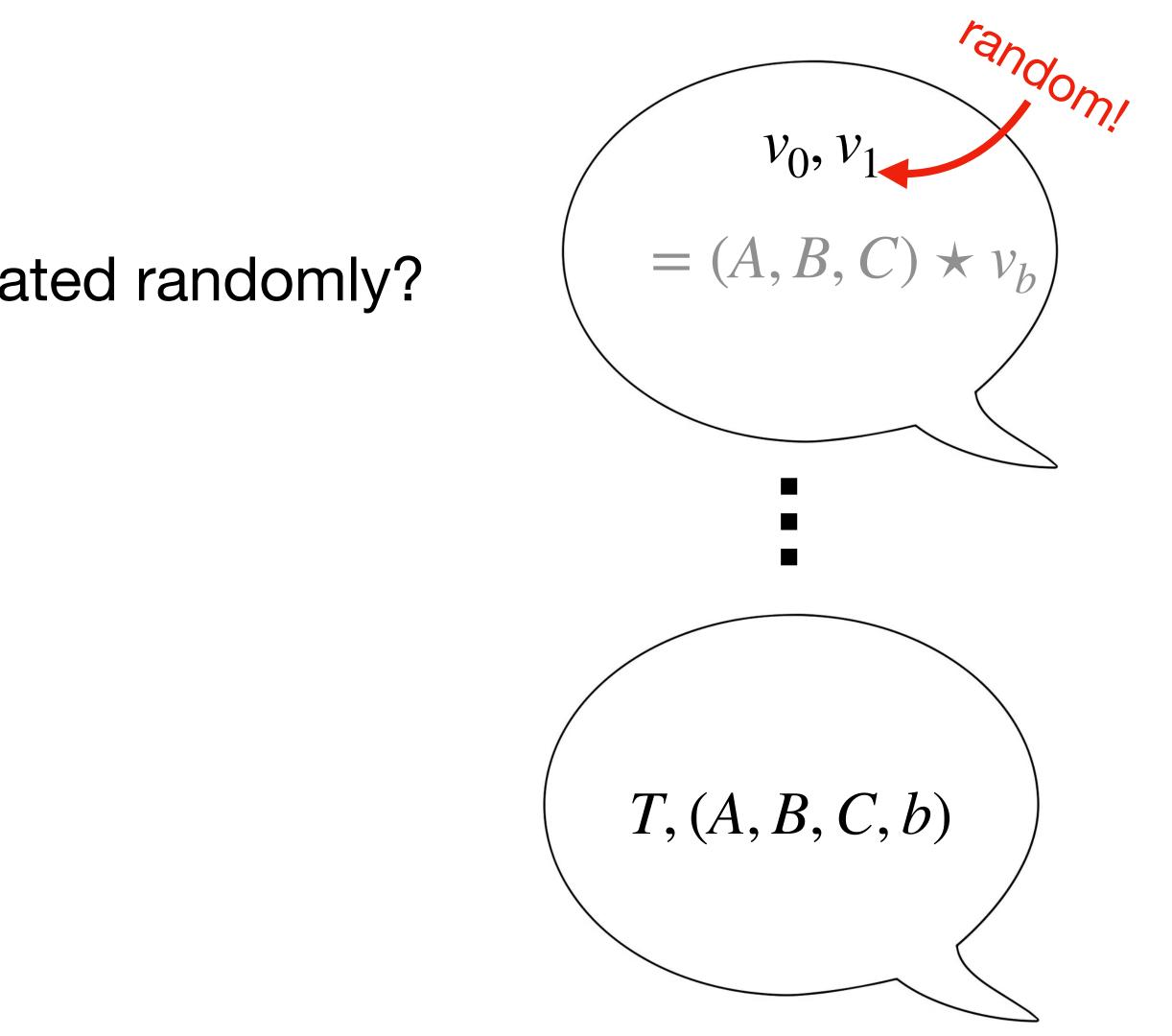


 \rightarrow tensors in different orbits

 \rightarrow no low rank points

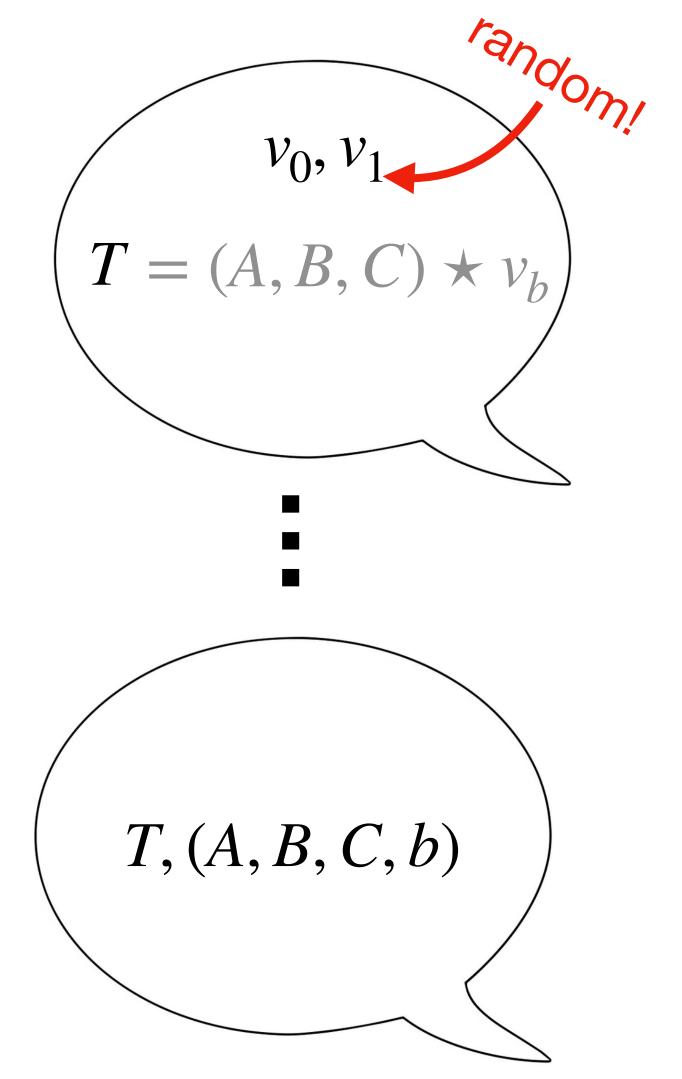


How can we ensure that v_0 , v_1 are generated randomly?



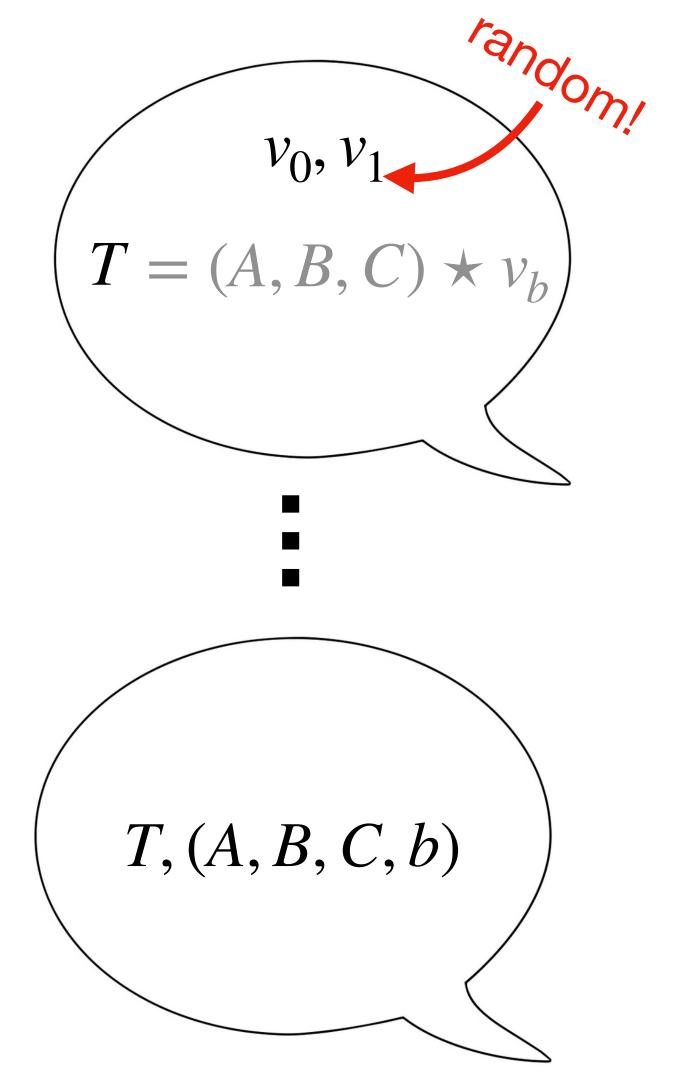
randomi V_0, v_1 $T = (A, B, C) \star v_b$ How can we ensure that v_0 , v_1 are generated randomly? T, (A, B, C, b)

How can we ensure that v_0, v_1 are generated randomly? \rightarrow pseudo-random number generator



Repair

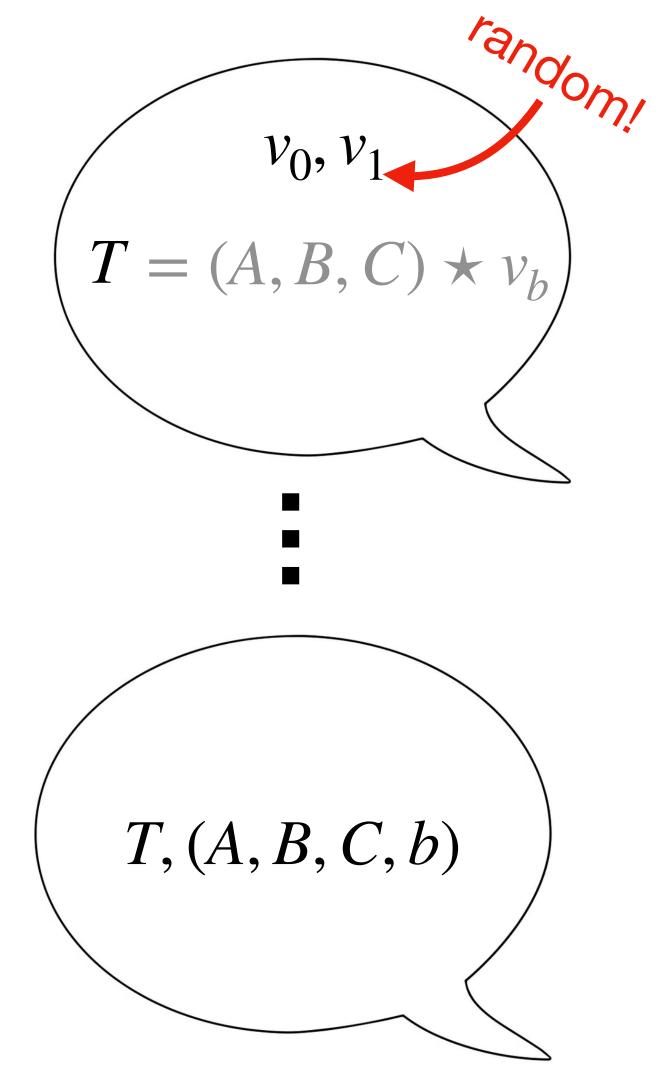
How can we ensure that v_0 , v_1 are generated randomly? → pseudo-random number generator \rightarrow cryptographic hash function

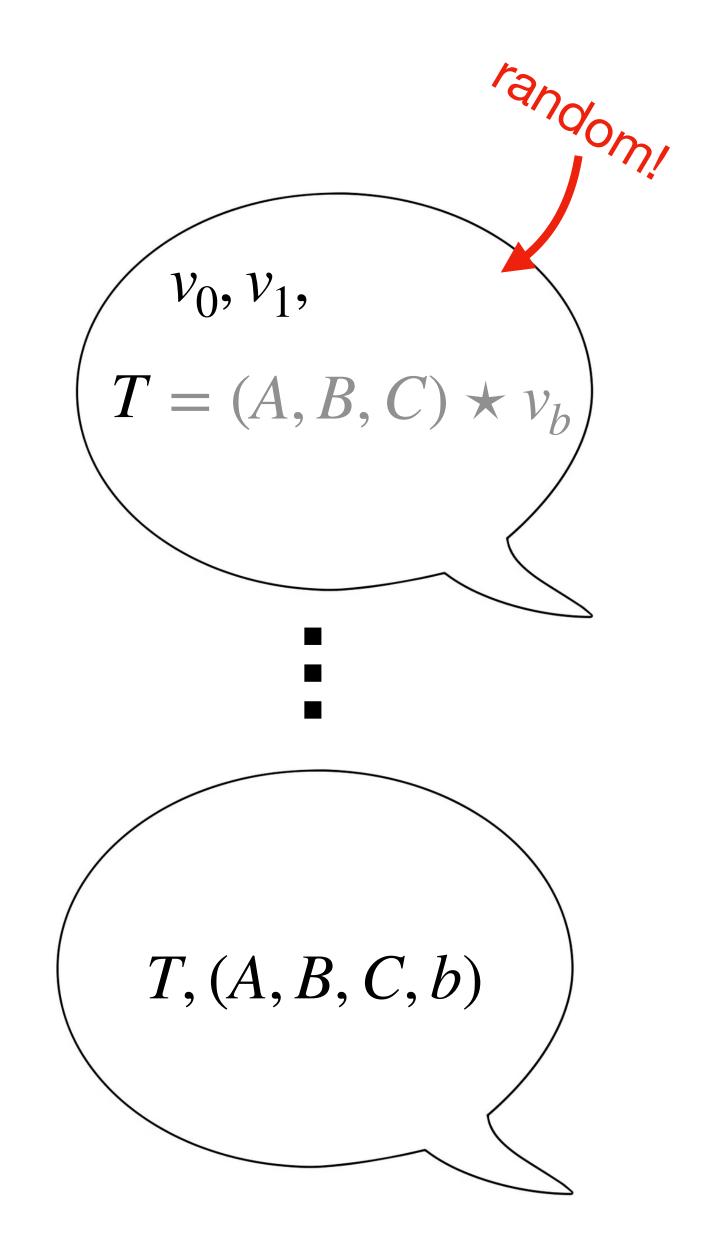


Repair

How can we ensure that v_0 , v_1 are generated randomly?

- → pseudo-random number generator
- \rightarrow cryptographic hash function
- \rightarrow trusted third party





randomi $V_0, v_1, v_2, \dots v_N$ $T = (A, B, C) \star v_b$ T, (A, B, C, b)

randomi $\begin{bmatrix} v_0, v_1, v_2, \dots v_N \\ T = (A, B, C) \star v_b \end{bmatrix}$ T, (A, B, C, b)

\rightarrow statistically binding

randomi $\langle v_0, v_1, v_2, \dots v_N \rangle$ $T = (A, B, C) \star v_b \rangle$ T, (A, B, C, b)

\rightarrow statistically binding

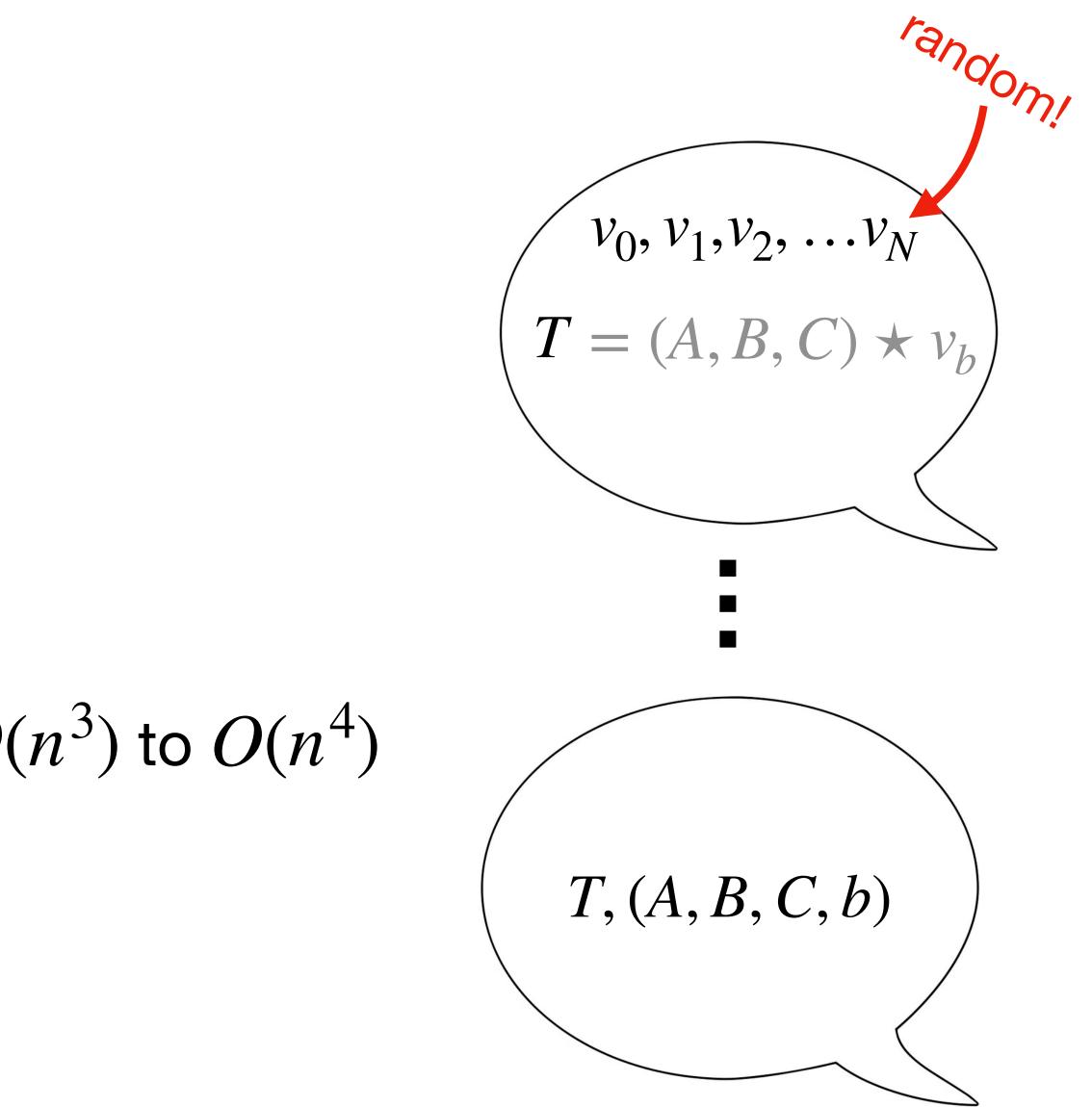
\rightarrow computationally hiding

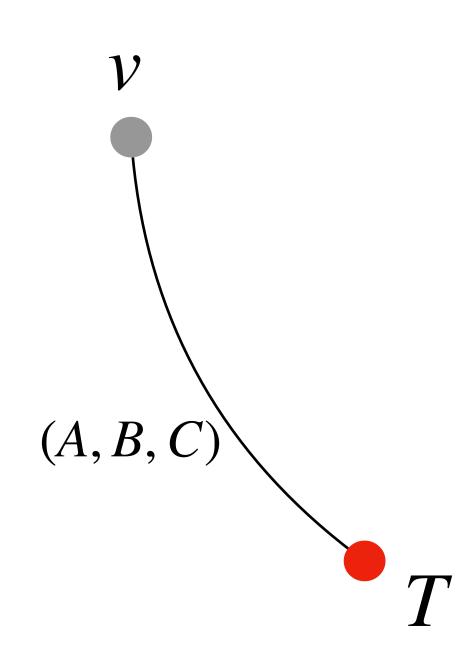
randomi $\langle v_0, v_1, v_2, \dots v_N \rangle$ $T = (A, B, C) \star v_b \rangle$ T, (A, B, C, b)

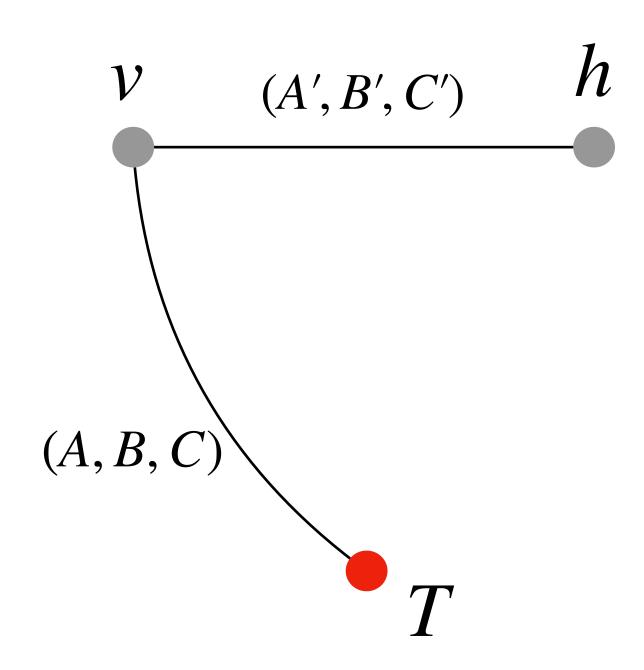
\rightarrow statistically binding

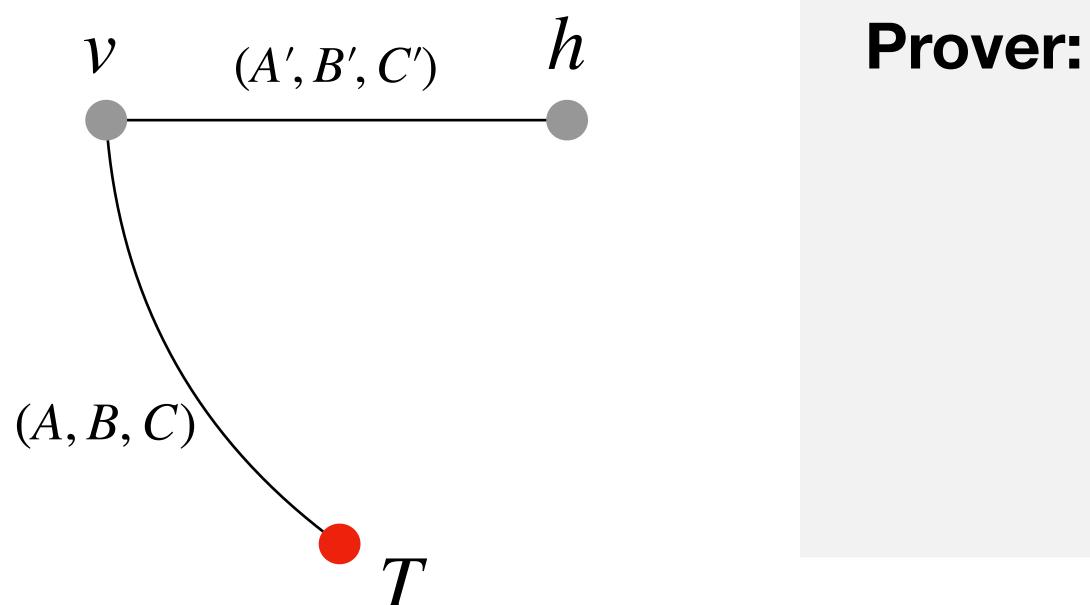
\rightarrow computationally hiding

 \rightarrow complexity increases from $O(n^3)$ to $O(n^4)$



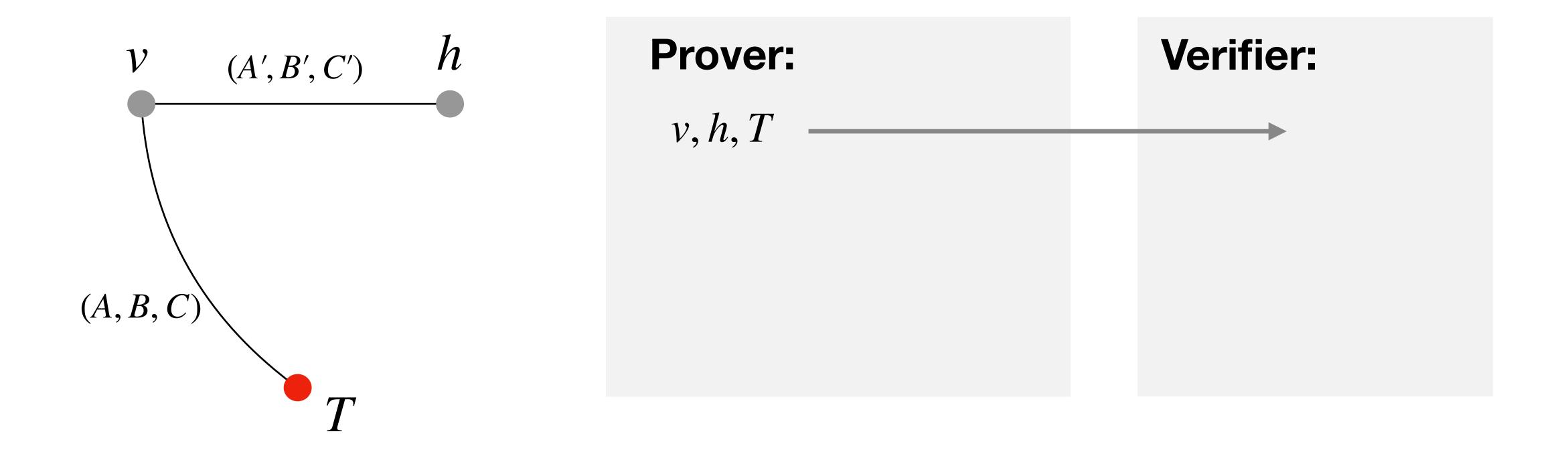


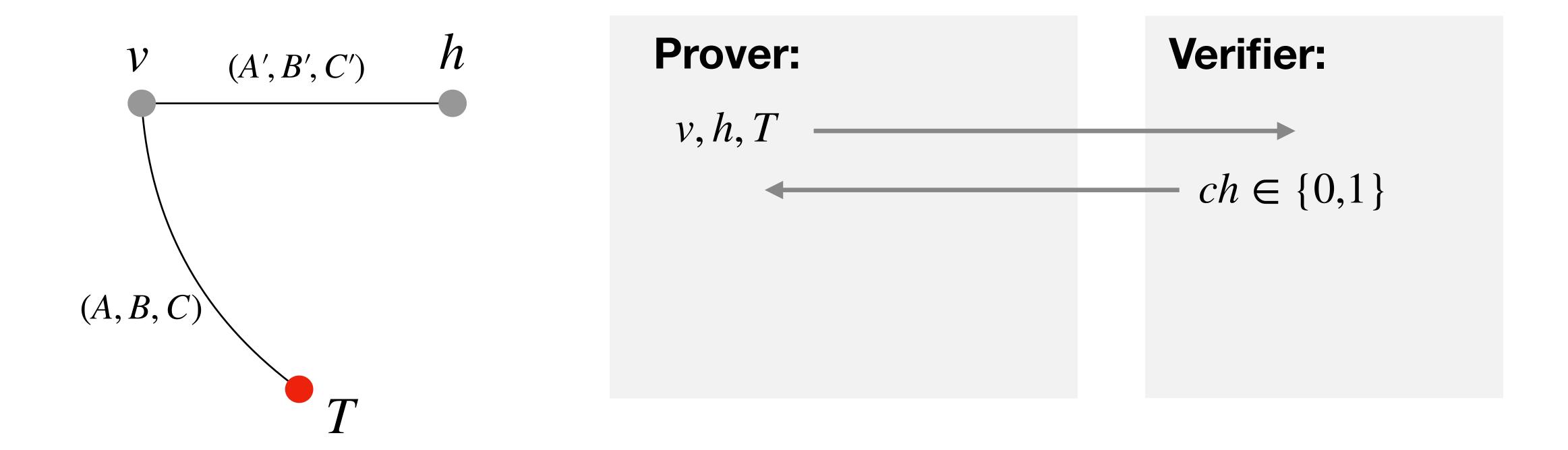


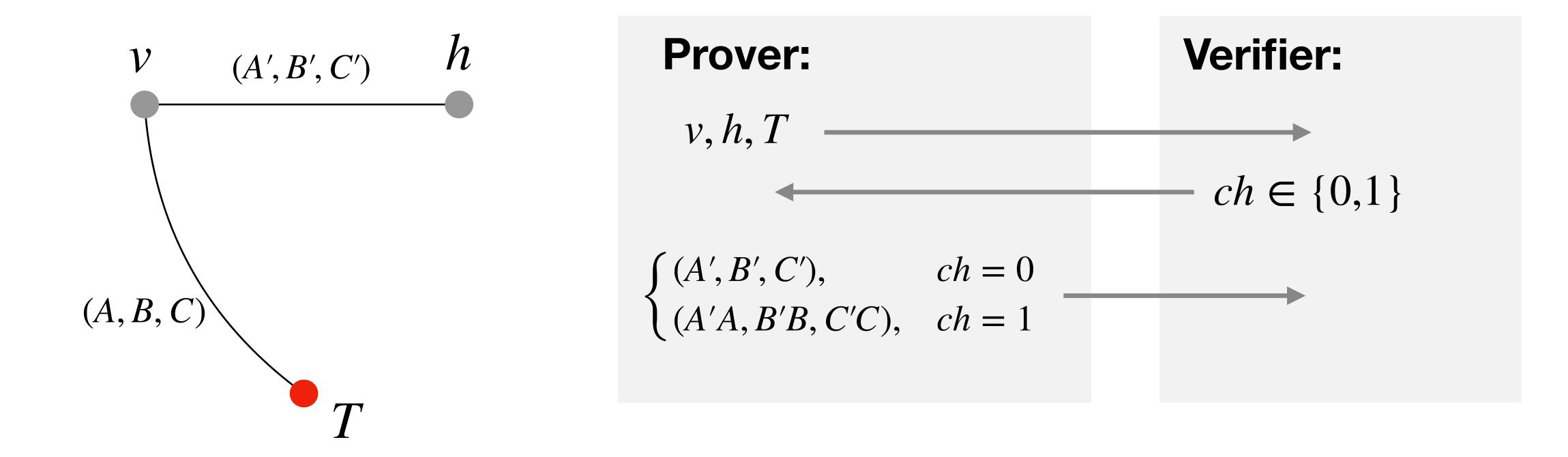


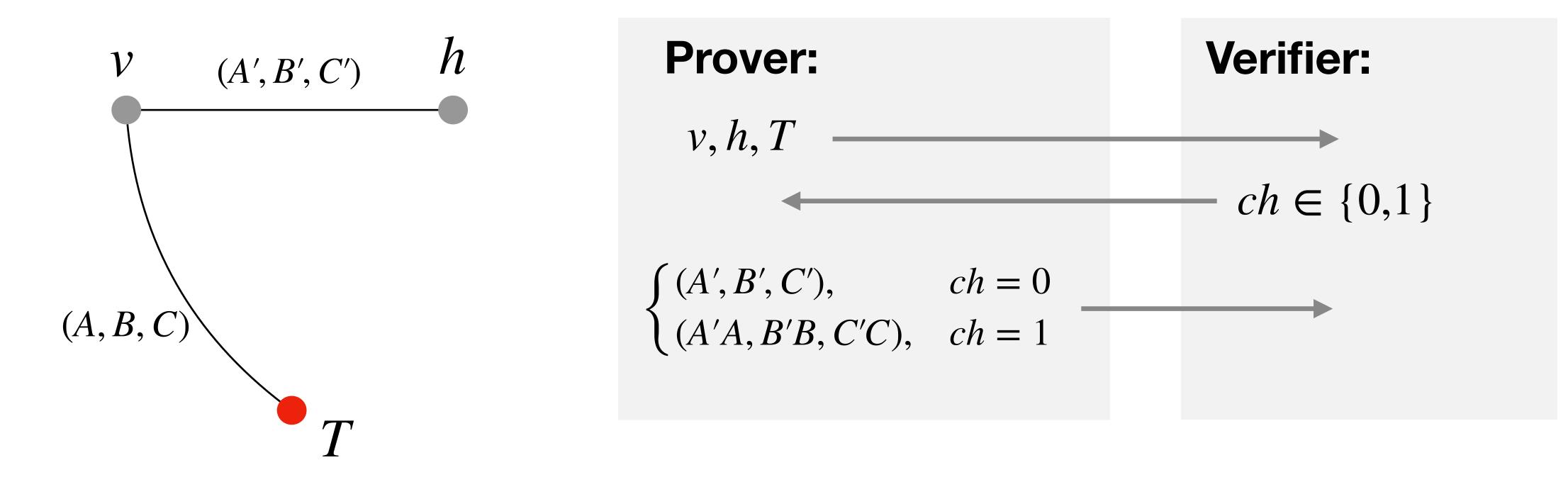
Sometimes we will want to prove that we know a committed value without revealing it

Verifier:





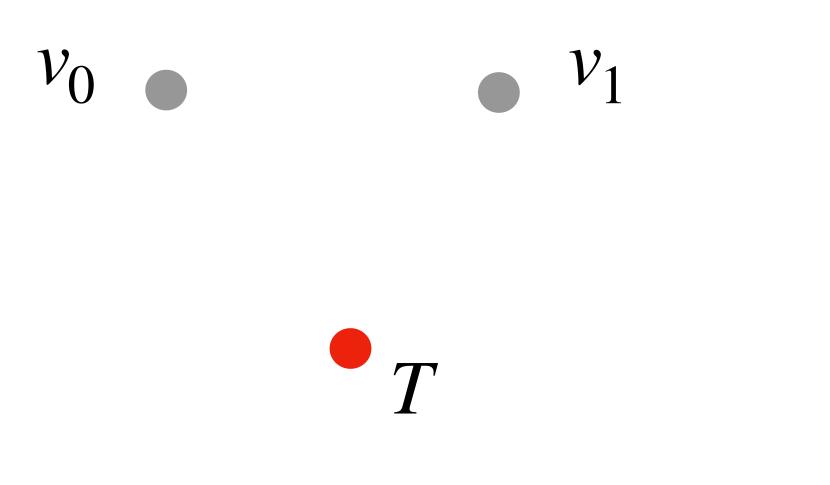




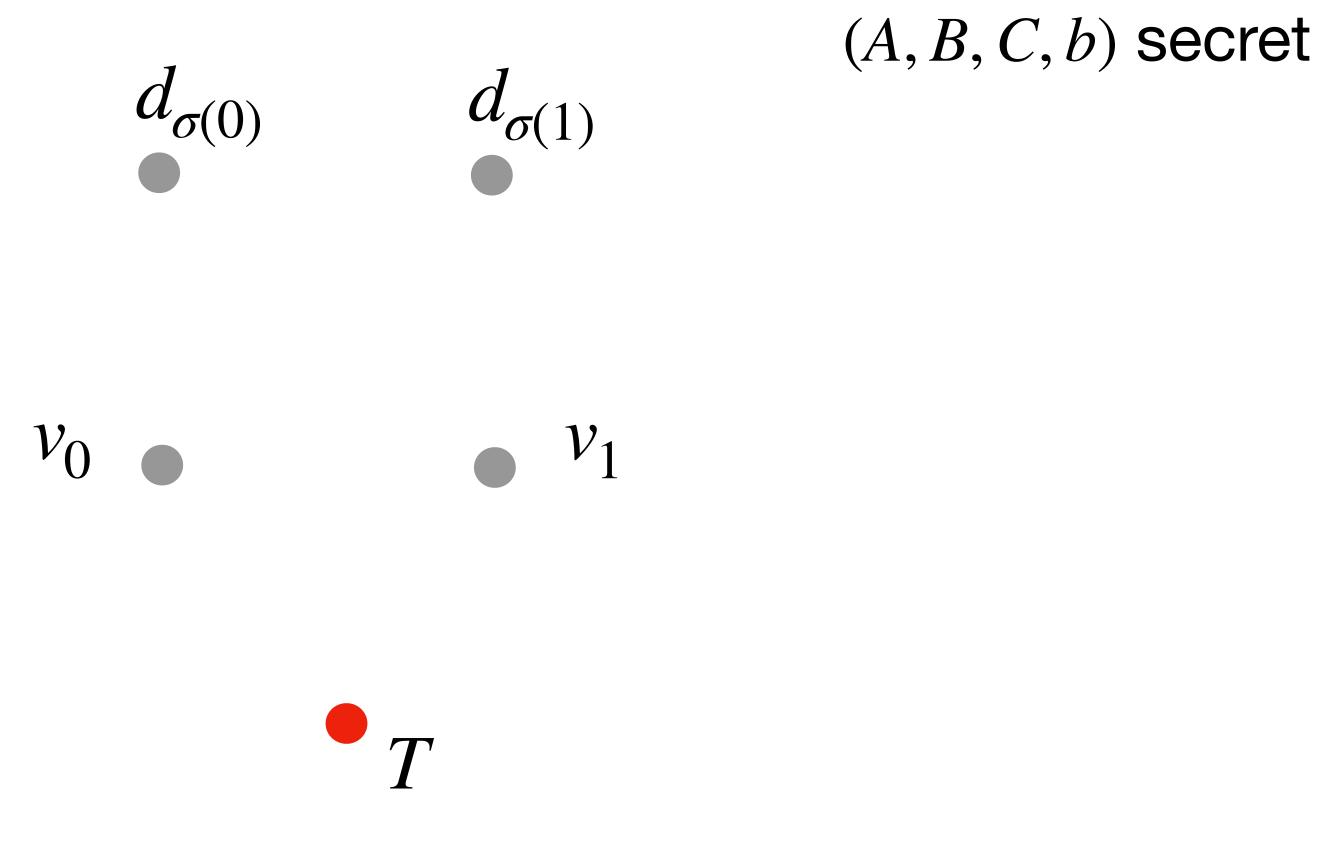
Sometimes we will want to prove that we know a committed value without revealing it

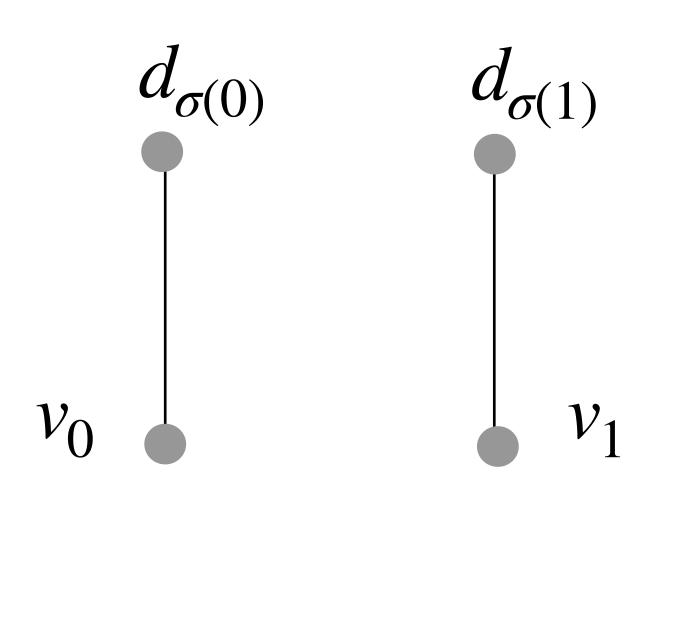
\rightarrow we need to keep v secret

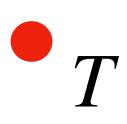
(A, B, C, b) secret



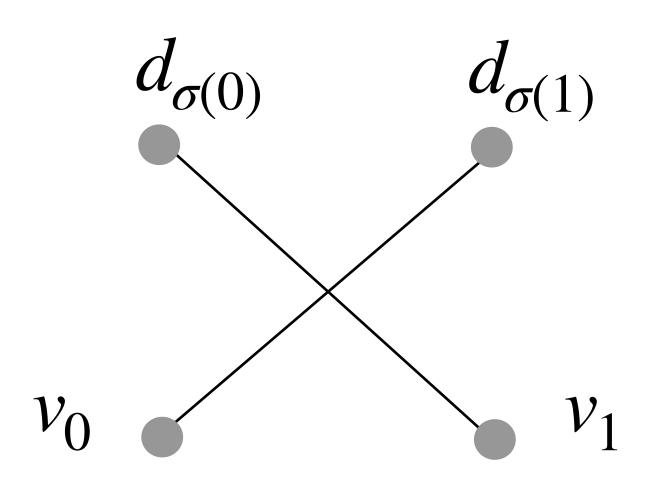
(A, B, C, b) secret



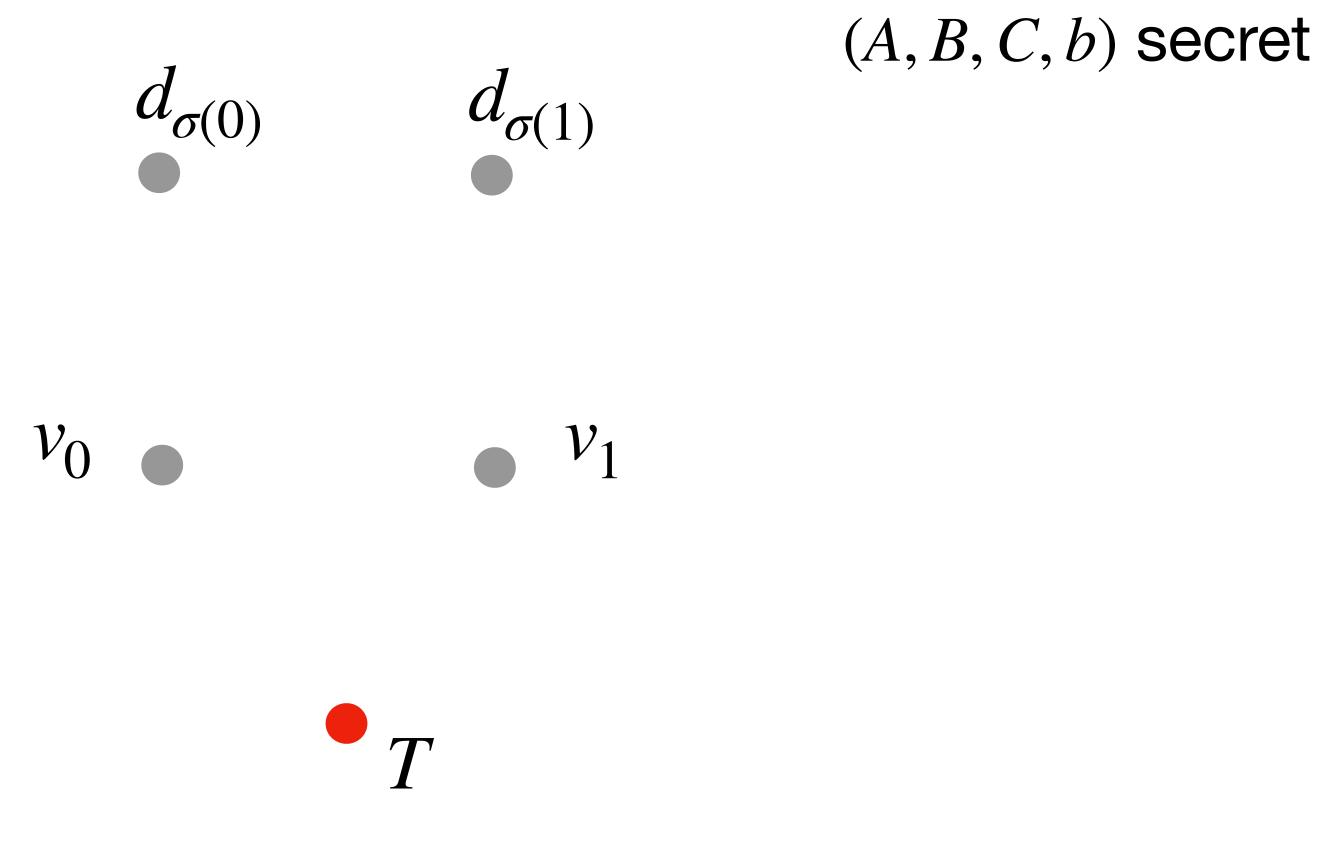


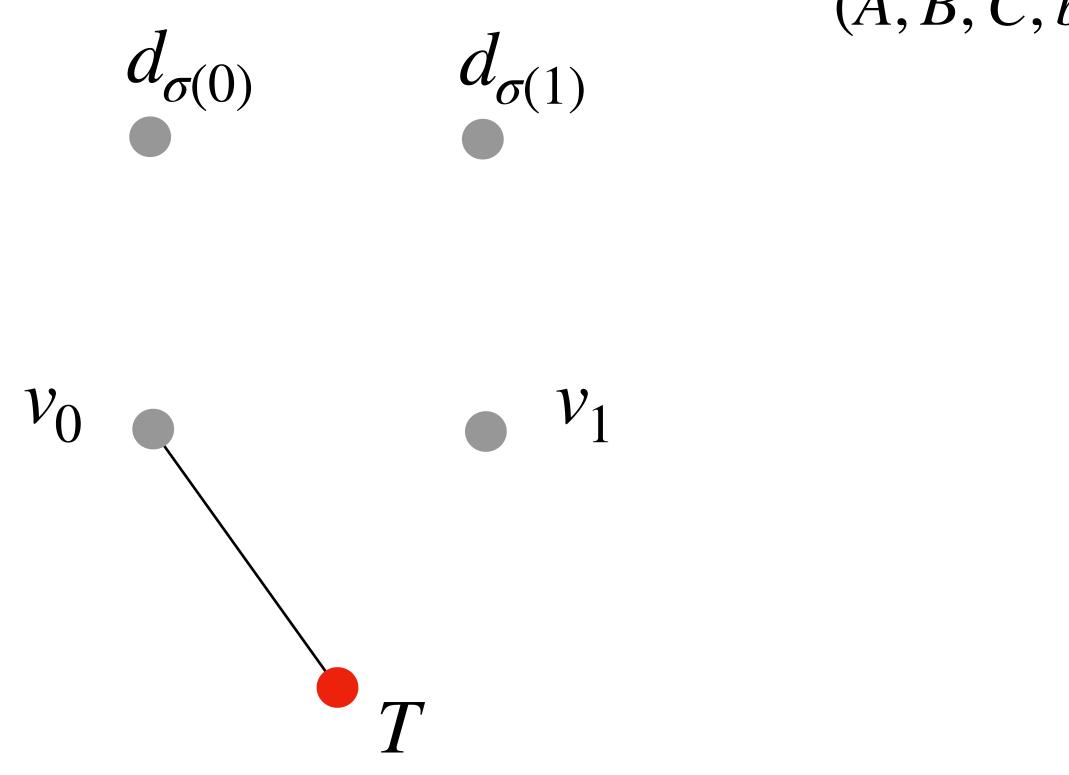


(A, B, C, b) secret

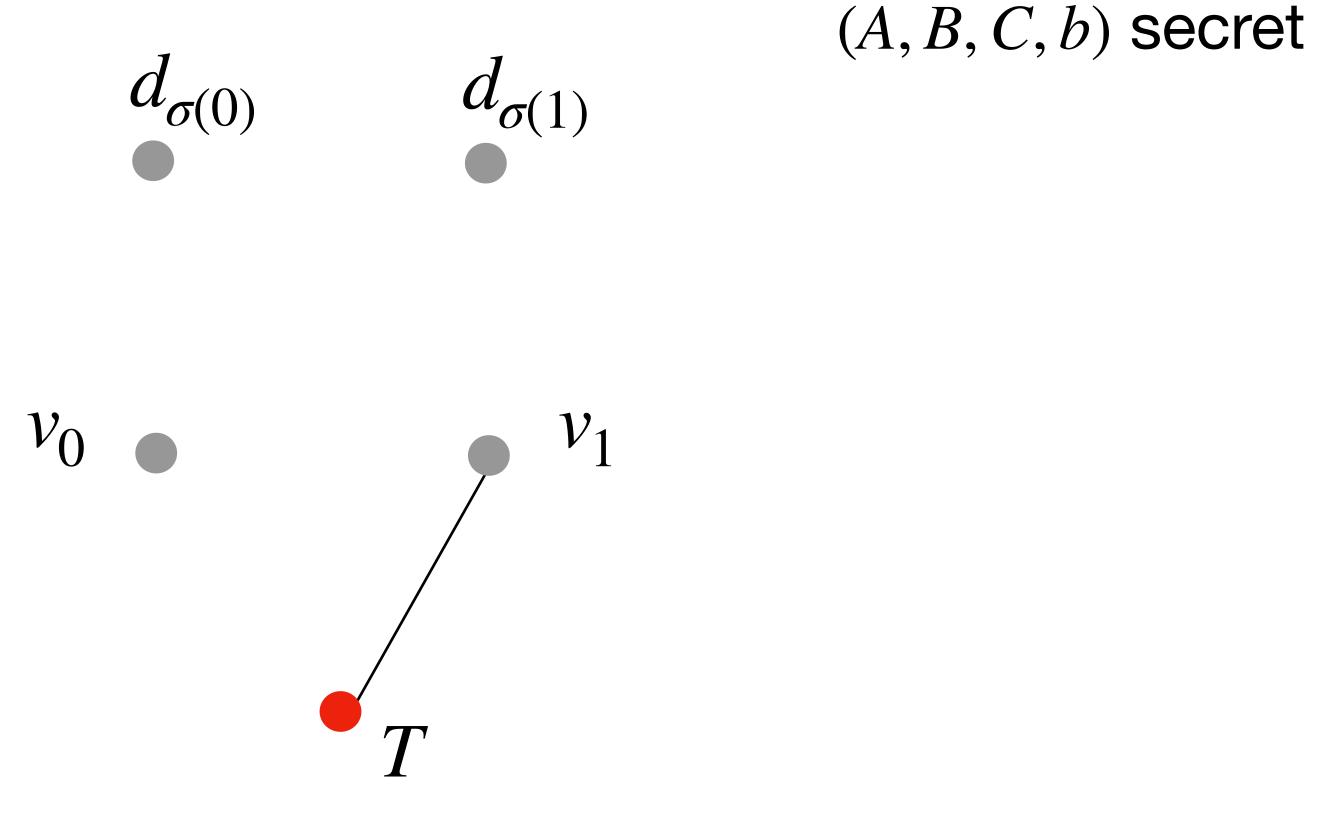


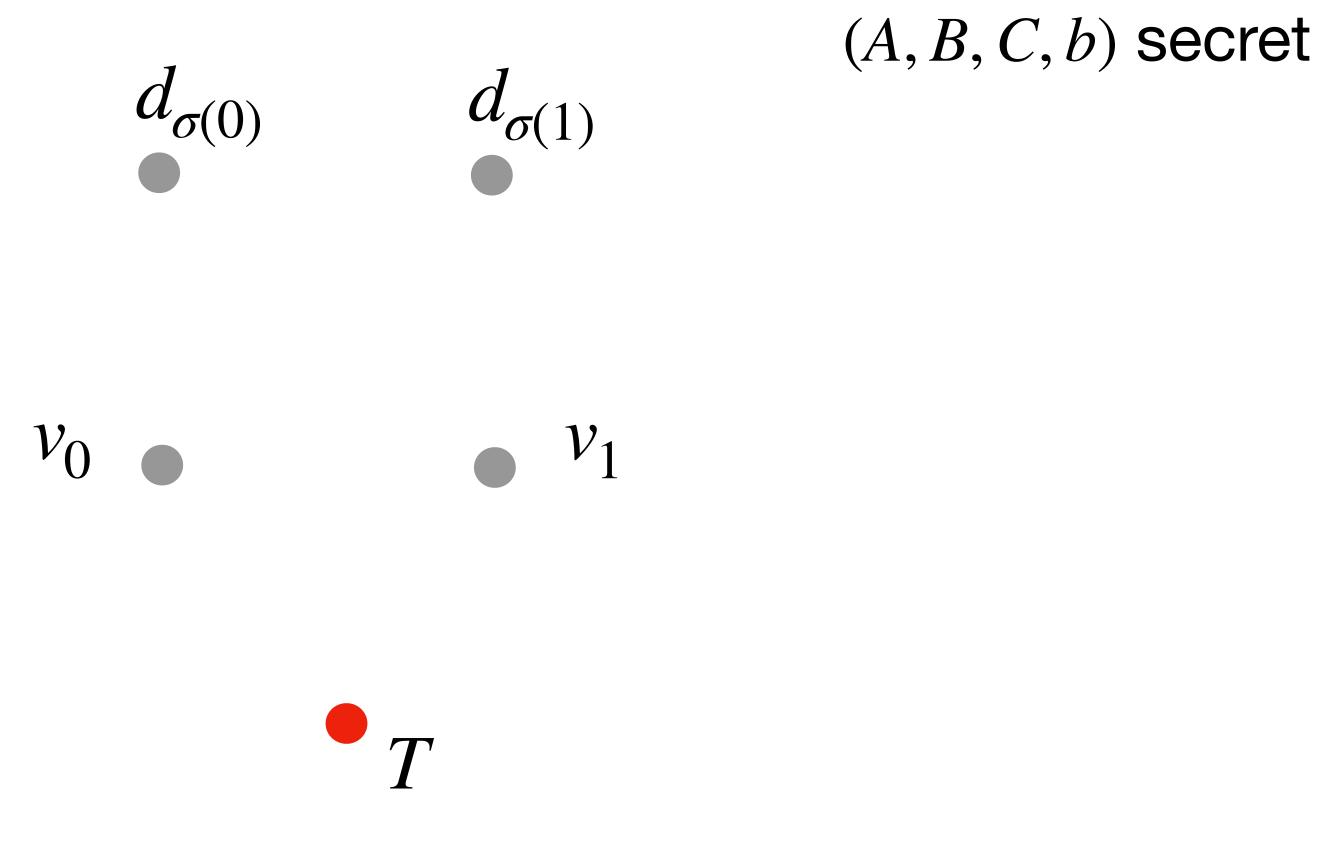
(A, B, C, b) secret

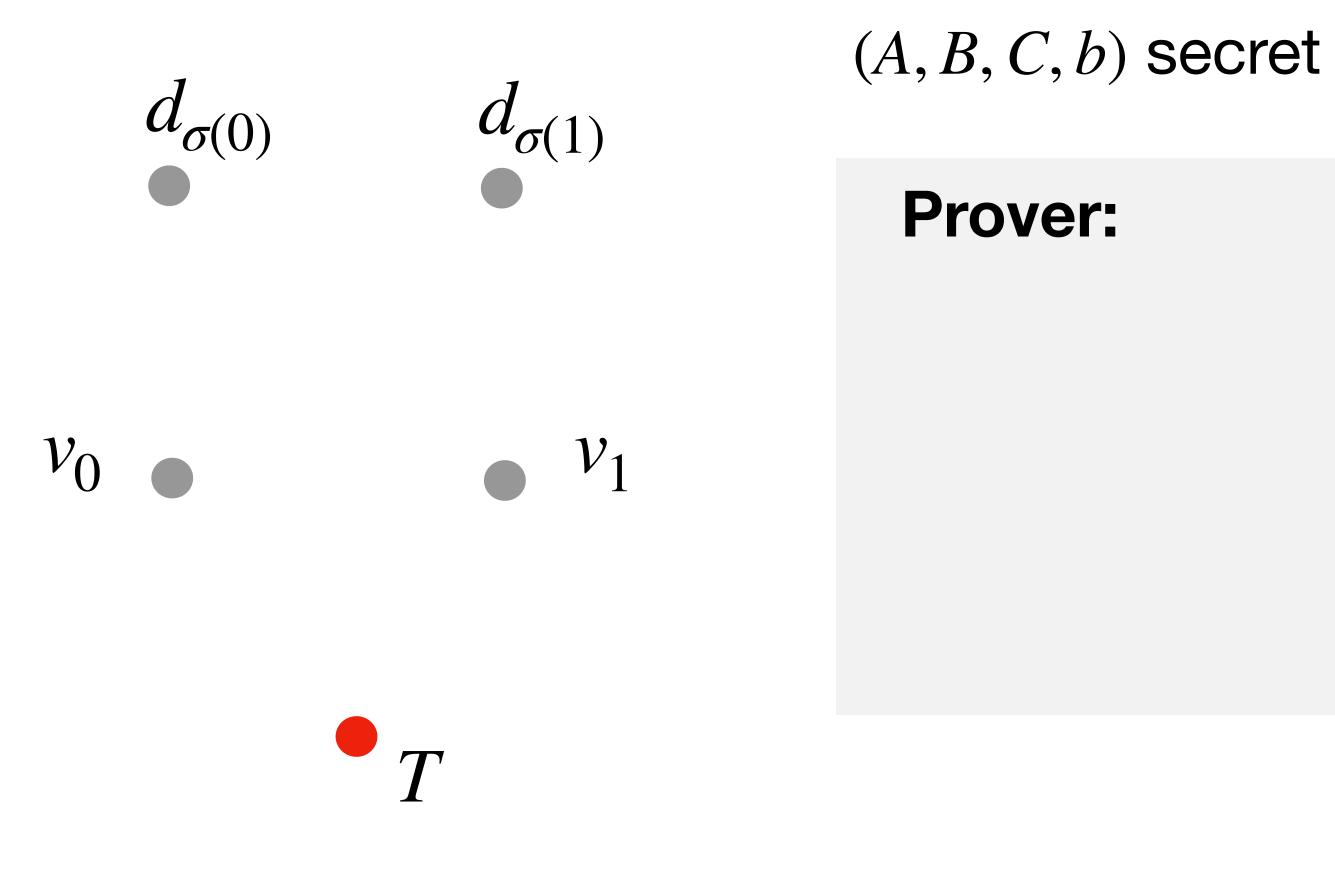




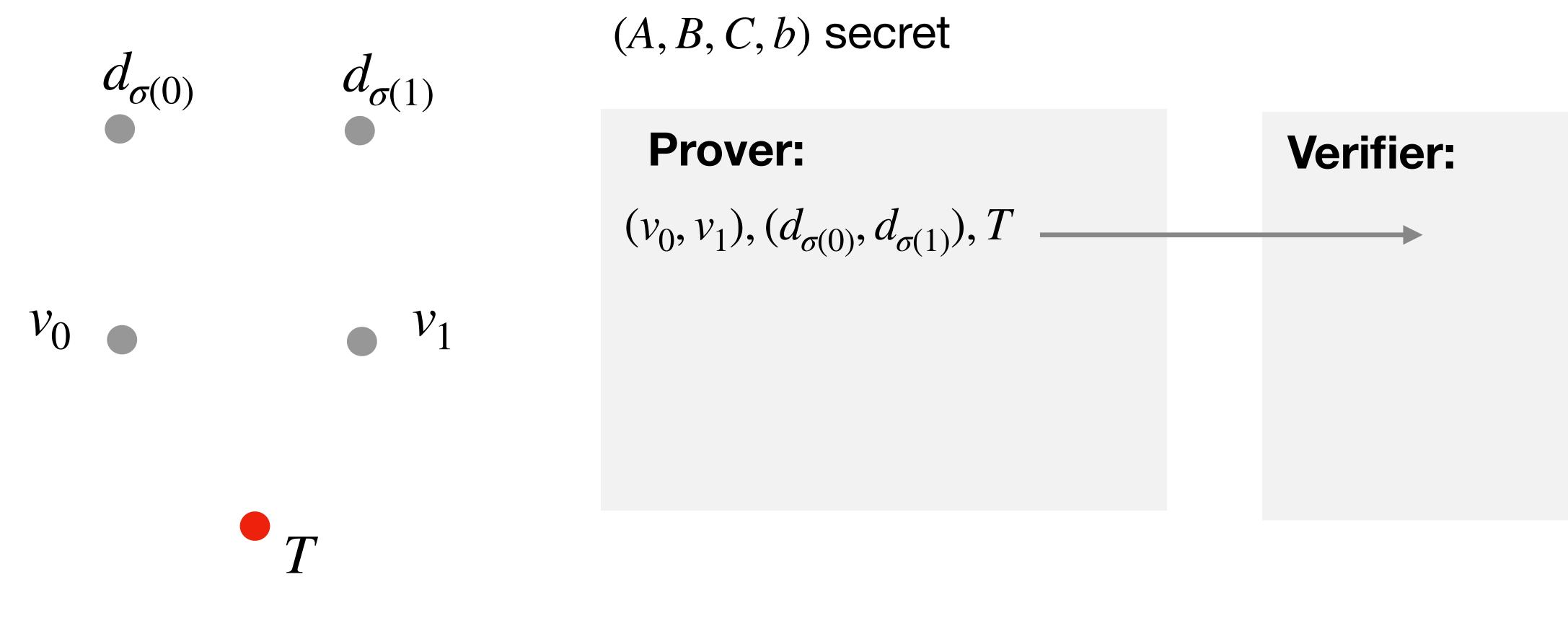
(A, B, C, b) secret



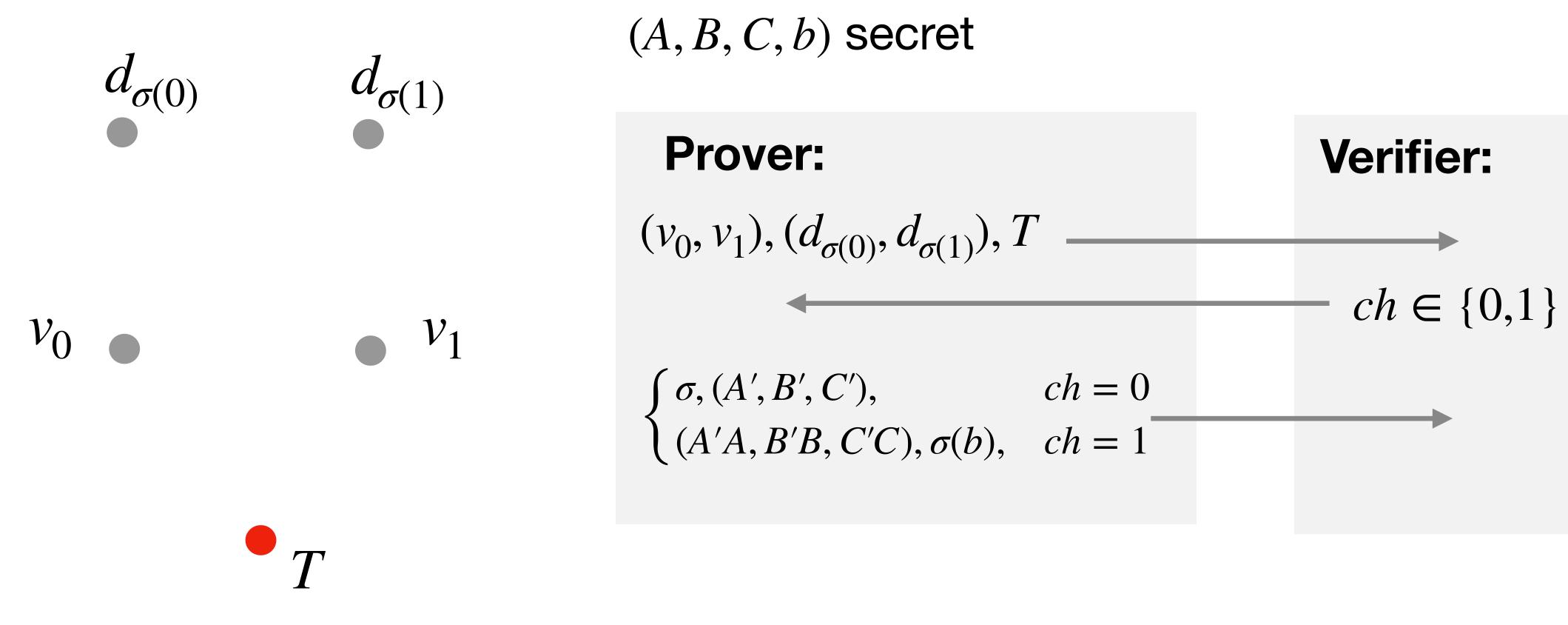


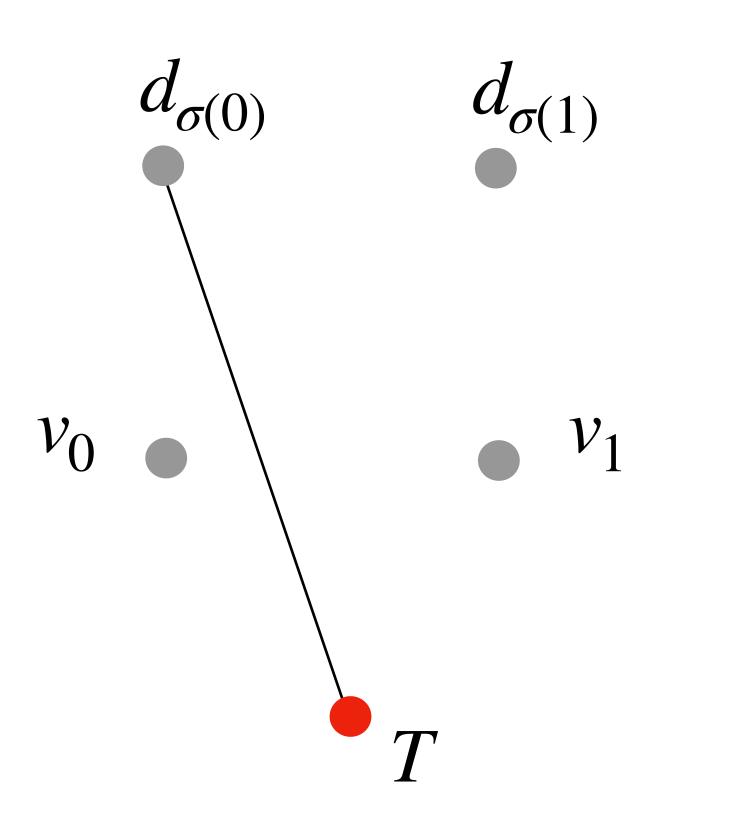


Verifier:



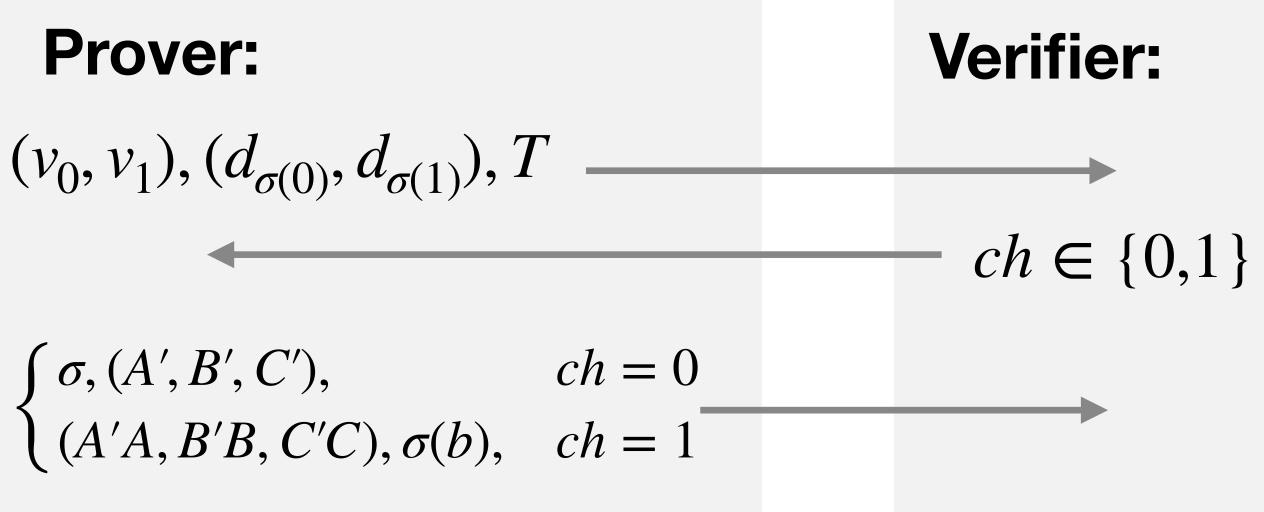


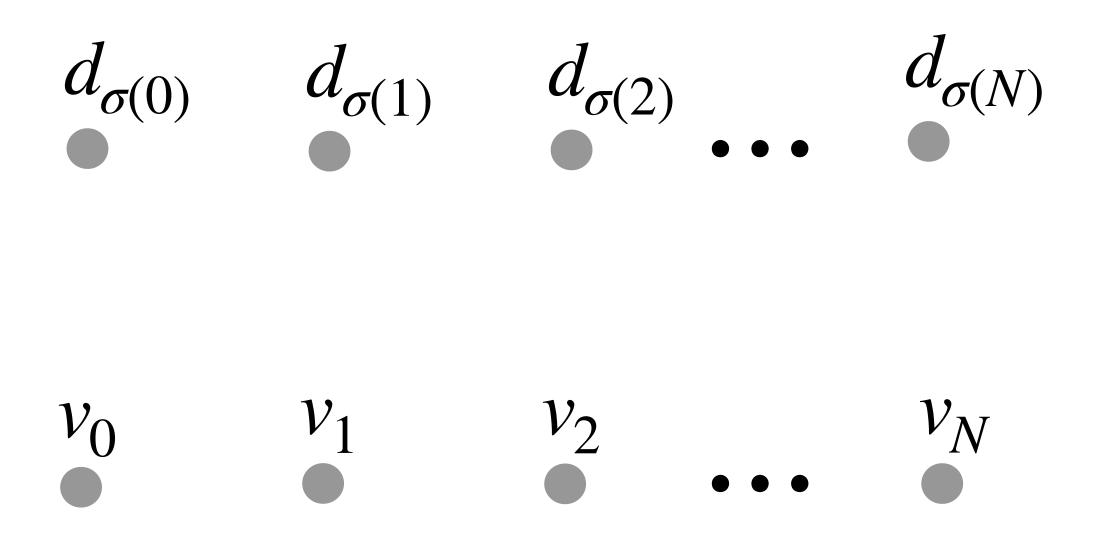




Prover:

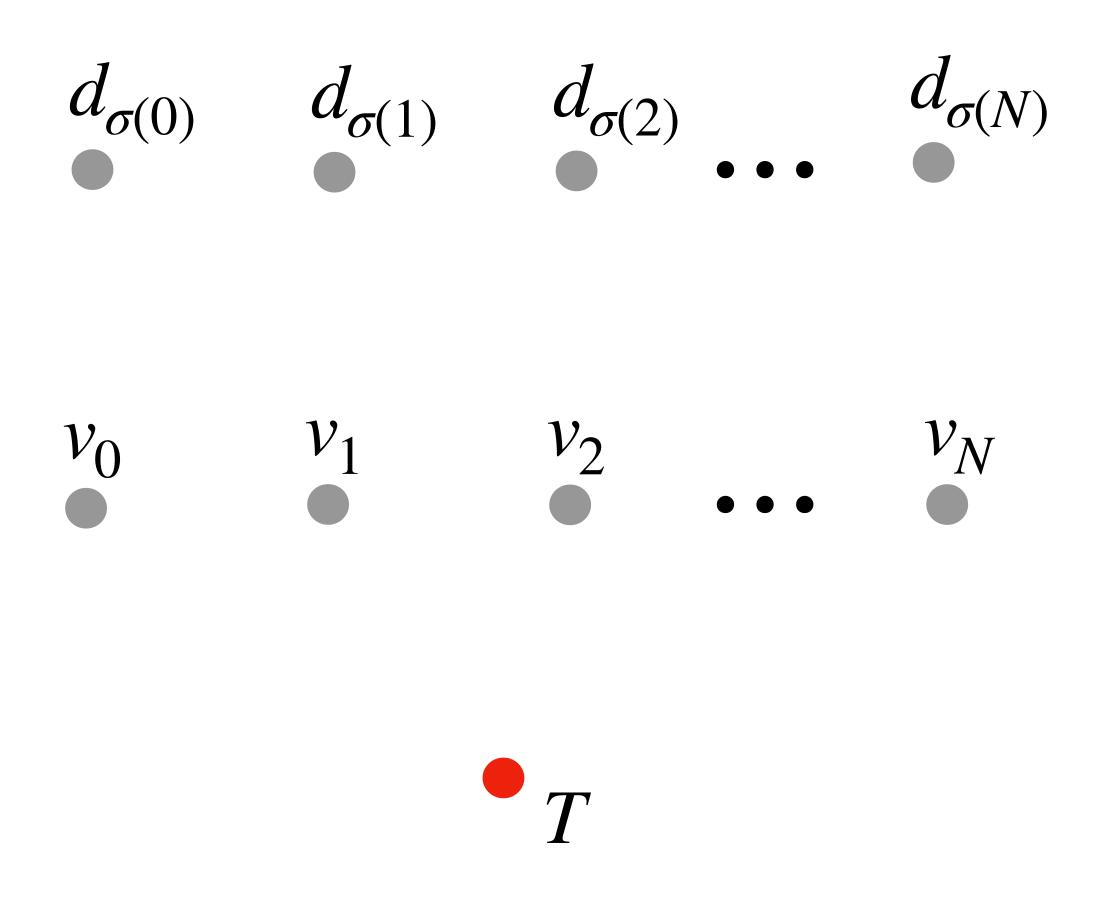
(A, B, C, b) secret





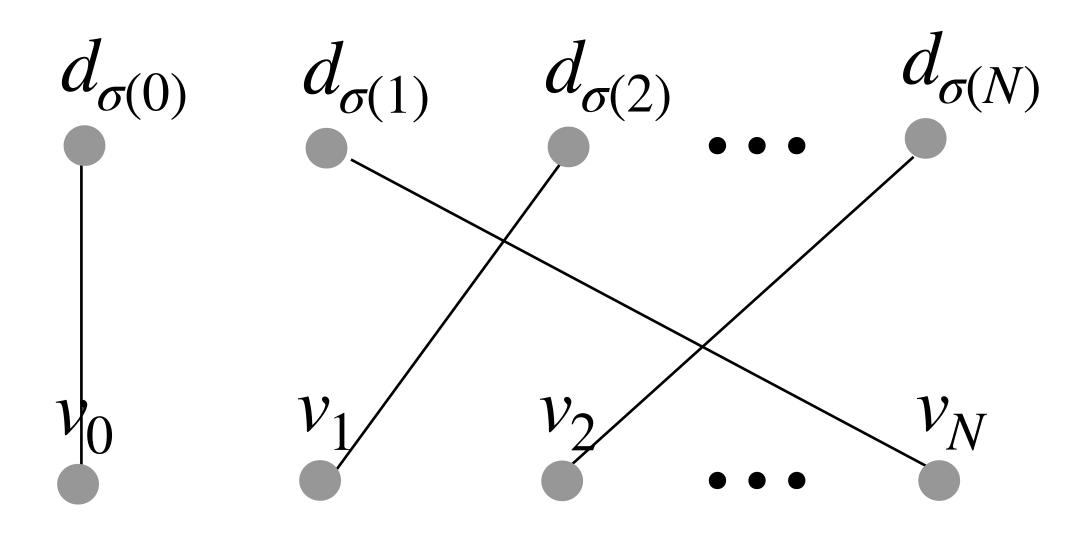
(A, B, C, b) secret

 \rightarrow if ch = 0 then reveal the isomorphisms between v_i and $d_{\sigma(i)}$



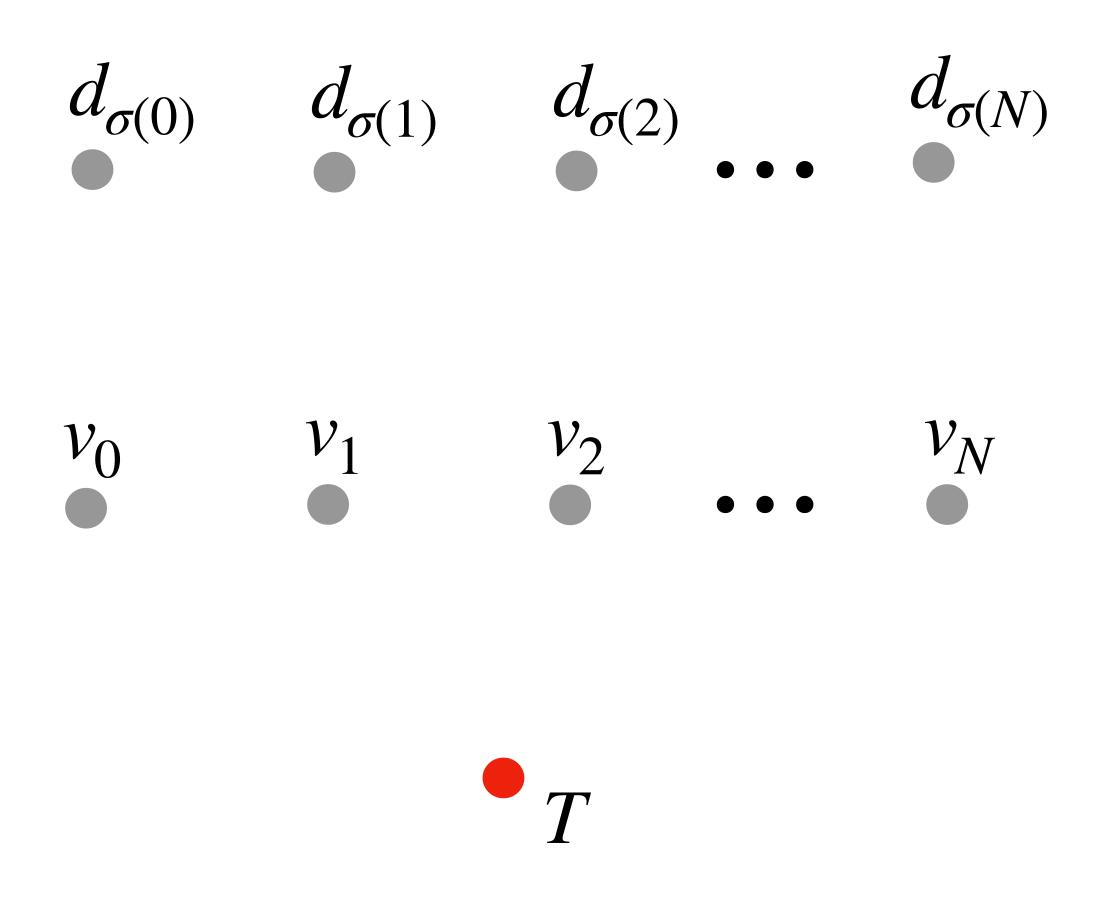
(A, B, C, b) secret

 \rightarrow if ch = 0 then reveal the isomorphisms between v_i and $d_{\sigma(i)}$



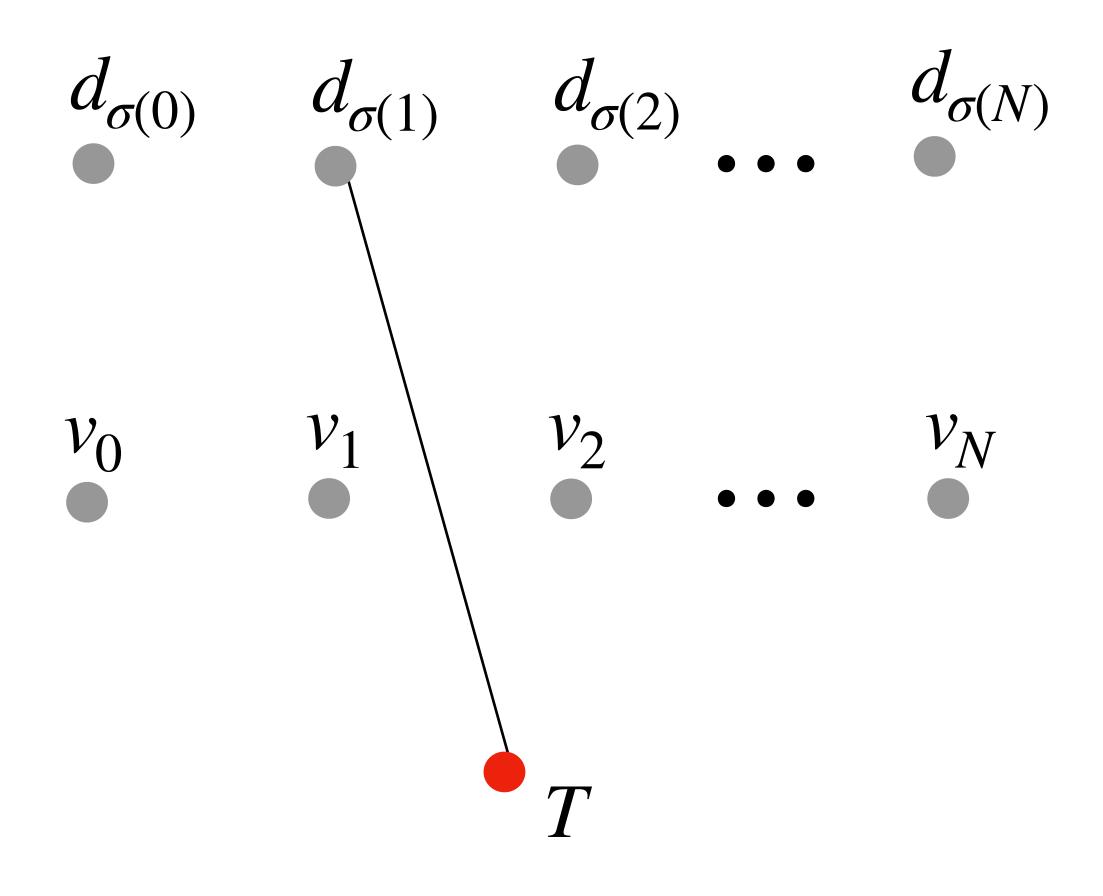
(A, B, C, b) secret

 \rightarrow if ch = 0 then reveal the isomorphisms between v_i and $d_{\sigma(i)}$



(A, B, C, b) secret

 \rightarrow if ch = 0 then reveal the isomorphisms between v_i and $d_{\sigma(i)}$



(A, B, C, b) secret

 \rightarrow if ch = 0 then reveal the isomorphisms between v_i and $d_{\sigma(i)}$

- Solving the Tensor Isomorphism Problem for special orbits with low rank points: Cryptanalysis and repair of an Asiacrypt 2023 commitment scheme

- Solving the Tensor Isomorphism Problem for special orbits with low rank points: Cryptanalysis and repair of an Asiacrypt 2023 commitment scheme

Solving the Tensor Isomorphism Problem for special orbits with low rank points: Cryptanalysis and repair of an Asiacrypt 2023 commitment scheme

- Solving the Tensor Isomorphism Problem for special orbits with low rank points: Cryptanalysis and repair
- of an Asiacrypt 2023 commitment scheme

- Solving the Tensor Isomorphism Problem
 - for special orbits with low rank points:
 - Cryptanalysis and repair
- of an Asiacrypt 2023 commitment scheme

- Solving the Tensor Isomorphism Problem
 - for special orbits with low rank points:
 - Cryptanalysis and repair
- of an Asiacrypt 2023 commitment scheme

- Solving the Tensor Isomorphism Problem
 - for special orbits with low rank points:
 - **Cryptanalysis** and repair
- of an Asiacrypt 2023 commitment scheme

- Solving the Tensor Isomorphism Problem
 - for special orbits with low rank points:
 - Cryptanalysis and repair
- of an Asiacrypt 2023 commitment scheme

- Solving the Tensor Isomorphism Problem
 - for special orbits with low rank points:
 - Cryptanalysis and repair
- of an Asiacrypt 2023 commitment scheme

 \rightarrow ePrint:2024/337

Thank you!

- Solving the Tensor Isomorphism Problem
 - for special orbits with low rank points:
 - Cryptanalysis and repair
- of an Asiacrypt 2023 commitment scheme

 \rightarrow ePrint:2024/337