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Commitment schemes

Coin flip!

Suppose we are playing a game, and want to choose who will go first

Does it work over the phone?
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Commitment schemes
In a commitment scheme a sender wants to commit to some value .m

the sender publishes a commitment 

depending on m
Tm

mLater the sender releases , 


and a verifier can check that  


was created using 

m

Tm

m
…

3



Commitment schemes

The scheme should be hiding: 
     - the commitment  should leak no information about T m

The scheme should be binding: 
     - no other value  should be able to open m′ ≠ m T

Tm

m

…

m′ 
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We would like to compute the tensor  where u ⊗ v ⊗ w u = [u1, u2], v = [v1, v2], w = [w1, w2] .
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Tensors
Tensor product is an operation on vectors

We would like to compute the tensor  where u ⊗ v ⊗ w u = [u1, u2], v = [v1, v2], w = [w1, w2] .

We proceed by first expanding the matrix v ⋅ wT :

v ⋅ wT = [v1w1 v1w2
v2w1 v2w2]
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Tensors
Tensor product is an operation on vectors

We would like to compute the tensor  where u ⊗ v ⊗ w u = [u1, u2], v = [v1, v2], w = [w1, w2] .

We proceed by first expanding the matrix v ⋅ wT :

v ⋅ wT = [v1w1 v1w2
v2w1 v2w2]

Now we multiply this matrix by each entry of , storing them in a list as we go:u

u1 [v1w1 v1w2
v2w1 v2w2], u2 [v1w1 v1w2

v2w1 v2w2]
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Let  be a tensor. We can always write it ast
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t = [u1v1w1 u1v1w2
u1v2w1 u1v2w2], [u2v1w1 u2v1w2

u2v2w1 u2v2w2]
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t = [u1v1w1 u1v1w2
u1v2w1 u1v2w2], [u2v1w1 u2v1w2

u2v2w1 u2v2w2]
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t = u1v1w1 ⋅ e1 ⊗ e1 ⊗ e1
+u1v1w2 ⋅ e1 ⊗ e1 ⊗ e2⋯

e.g.
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t = [u1v1w1 u1v1w2
u1v2w1 u1v2w2], [u2v1w1 u2v1w2

u2v2w1 u2v2w2]

6

t = u1v1w1 ⋅ e1 ⊗ e1 ⊗ e1
+u1v1w2 ⋅ e1 ⊗ e1 ⊗ e2⋯

e.g.

= ∑
i,j,k

uivjwk ⋅  ei ⊗ ej ⊗ ek
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Let  be invertible matricesA, B, C

We can compute the following isomorphism applied to  :t

(A, B, C) ⋆ t := ∑
i,j,k

mi,j,k Aei ⊗ Bej ⊗ Cek

t := ∑
i,j,k

mi,j,k ei ⊗ ej ⊗ ek
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Let  be invertible matricesA, B, C

We can compute the following isomorphism applied to  :t

(A, B, C) ⋆ t := ∑
i,j,k

mi,j,k Aei ⊗ Bej ⊗ Cek

t := ∑
i,j,k

mi,j,k ei ⊗ ej ⊗ ek

A

B

C
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ei ⊗ ej ⊗ ek = [
1 1 1
1 1 1
1 1 1], [

1 1 1
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4 4 4
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 such that 
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(A, B, C) (A, B, C) ⋆ v0 = v1
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Tensors
Decisional Tensor Isomorphism Problem (dTIP): 


Given random  decide whether there exists


 such that 

v0, v1

(A, B, C) (A, B, C) ⋆ v0 = v1

Computational Tensor Isomorphism Problem (cTIP): 


Given random  compute


 such that 

v0, v1

(A, B, C) (A, B, C) ⋆ v0 = v1
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11

A code is the linear subspace that is generated by a set of matrices 

G := [G1, …Gn]

Codes are equivalent if they generate the same subspace.

Equivalent codes take the form
G′ = [λ1,1G1 + ⋯λ1,nGn, ⋯λn,1G1 + ⋯λn,nGn]

Computational Tensor Isomorphism Problem (cTIP): 


Given random  compute


 such that 

v0, v1

(A, B, C) (A, B, C) ⋆ v0 = v1

Matrix Code Equivalence (MCE): 

Given  compute (if it exists)


 such that 

G, G′ 

(A, B, C) (A, B, C) ⋆ G = G′ 

* this is for the case where all the dimensions are n
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A trilinear form is a map 

φ : 𝔽n
q × 𝔽n

q × 𝔽n
q → 𝔽q,

We say two trilinear forms, , are equivalent if there exists some  

such that

φ, ψ A ∈ GLn(𝔽q)

φ(u, v, w) = ψ(Au, Av, Aw)

Computational Tensor Isomorphism Problem (cTIP): 


Given random  compute


 such that 

v0, v1

(A, B, C) (A, B, C) ⋆ v0 = v1

Trilinear Form Equivalence (TFE): 

Given  compute (if it exists)


 such that 

D, D′ 

(A, B, C) (A, B, C) ⋆ D = D′ 

12

φ(ei, ej, ek) := mi,j,k
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commitment scheme

13



DFG paper

14



DFG paper

14

t0 t1



DFG paper

14

t0 t1

(A, B, C)

T



DFG paper

14

t0 t1

(A, B, C)

T

Is it hiding?



DFG paper

14

t0 t1

(A, B, C)

T

Is it hiding?

Decisional Tensor Isomorphism Problem (dTIP): 


Given random  decide whether there exists


 such that 

v0, v1

(A, B, C) (A, B, C) ⋆ v0 = v1



DFG paper

14

Is it binding?

t0 t1

(A, B, C)

T

Is it hiding?

Decisional Tensor Isomorphism Problem (dTIP): 


Given random  decide whether there exists


 such that 

v0, v1

(A, B, C) (A, B, C) ⋆ v0 = v1



DFG paper

14

Is it binding?

t0 t1

(A, B, C)

T

Is it hiding?

Decisional Tensor Isomorphism Problem (dTIP): 


Given random  decide whether there exists


 such that 

v0, v1

(A, B, C) (A, B, C) ⋆ v0 = v1

(A0, B0, C0)



DFG paper

14

Is it binding?

t0 t1

(A, B, C)

T

Is it hiding?

Decisional Tensor Isomorphism Problem (dTIP): 


Given random  decide whether there exists


 such that 

v0, v1

(A, B, C) (A, B, C) ⋆ v0 = v1

(A0, B0, C0)

T = (A, B, C) ⋆ t0



DFG paper

14

Is it binding?

t0 t1

(A, B, C)

T

Is it hiding?

Decisional Tensor Isomorphism Problem (dTIP): 


Given random  decide whether there exists


 such that 

v0, v1

(A, B, C) (A, B, C) ⋆ v0 = v1

(A0, B0, C0)

T = (A, B, C) ⋆ t0
= (A, B, C) ⋆ ((A0, B0, C0) ⋆ t1)
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Tensors

rank-1 tensor : u ⊗ v ⊗ w

rank-  tensor : k
k

∑
i=1

ui ⊗ vi ⊗ wi

hard problem : 





 

given a tensor T := [T1, …Tn],

 compute the rank of T

For random tensors, this problem is believed to be hard
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DFG paper
t0 t1

(A, B, C)

T

- we need  and  to be in different orbitst0 t1

-different ranks ensures this

Lemma : rank((A, B, C) ⋆ t) = rank(t)
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DFG paper
We need two tensors with different rank… but computing rank is hard…

t0 =
3

∑
i=1

ei ⊗ ei ⊗ ei = [
1 0 0
0 0 0
0 0 0], [

0 0 0
0 1 0
0 0 0], [

0 0 0
0 0 0
0 0 1]

t1 =
2

∑
i=1

ei ⊗ ei ⊗ ei = [
1 0 0
0 0 0
0 0 0], [

0 0 0
0 1 0
0 0 0], [

0 0 0
0 0 0
0 0 0]
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([
5 4 2
4 2 0
1 1 1], [

1 0 0
0 3 2
0 2 4],

5 2 3
2 1 1
5 4 2 ) ⋆ t1 = [

4 3 4
3 5 6
2 1 4],

6 1 6
5 6 3
1 4 2

,
5 2 5
6 3 5
4 2 1

DFG paper
We need two tensors with different rank… but computing rank is hard…

t0 =
3

∑
i=1

ei ⊗ ei ⊗ ei = [
1 0 0
0 0 0
0 0 0], [

0 0 0
0 1 0
0 0 0], [

0 0 0
0 0 0
0 0 1]

t1 =
2

∑
i=1

ei ⊗ ei ⊗ ei = [
1 0 0
0 0 0
0 0 0], [

0 0 0
0 1 0
0 0 0], [

0 0 0
0 0 0
0 0 0]

An example, over 𝔽7 :
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DFG paper

…
T

T, (A, B, C, b)

binding  perfect→

hiding  related to the dTIP→

Decisional Tensor Isomorphism Problem (dTIP): 


Given random  decide whether there exists


 such that 

v0, v1

(A, B, C) (A, B, C) ⋆ v0 = v1

t0, t1

18

= (A, B, C) ⋆ tb
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Distinguishing attack
the rank of a point :

We say the rank of  in  is exactly u = (u1, …un) T = [T1, …Tn]

rank(u)T = rank(u1T1 + ⋯unTn)

We will be concerned with points of rank 0

i.e. points u such that rank(u1T1 + ⋯unTn) = [
0 0 0
0 0 0
0 0 0]

19



Distinguishing attack

20



Distinguishing attack

t0 = [
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0 1 0
0 0 0], [

0 0 0
0 0 0
0 0 1]Recall that
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t0 = [
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0 0 1]Recall that
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 Runtime < 1 second→

n q

14

22

30

4093

4093

2039

Distinguishing attack:

No parameters were given in DFG.


These parameters were taken from MEDS.
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Decisional Tensor Isomorphism Problem (dTIP): 


Given random  decide whether there exists


 such that 

v0, v1

(A, B, C) (A, B, C) ⋆ v0 = v1

What about cTIP?
Computational Tensor Isomorphism Problem (cTIP): 


Given random  compute


 such that 

v0, v1

(A, B, C) (A, B, C) ⋆ v0 = v1

24
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25

A first attempt : Gröbner basis?

We can use a Gröbner basis to solve systems of multivariate polynomials 

 uses Buchberger’s algorithm→
 manipulates the polynomials to eventually apply Gaussian elimination→
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How can we reduce the number of solutions? 

The stabilizer group of  is matrix triples  such thatt0 (M1, M2, M3)
(M1, M2, M3) ⋆ t0 = t0

Some examples of stabilizer elements include : 

λa 0 0
0 λa 0
0 0 λa

⋅
λb 0 0
0 λb 0
0 0 λb

⋅
λc 0 0
0 λc 0
0 0 λc

= I e.g. [
0 1 0
1 0 0
0 0 1]

any permutation matrices ,(P, P, P)

27
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Note,  has exactly  rank 1 points, and thus so does t0 n T = (A, B, C) ⋆ t0

Lemma : the rows of  are all rank 1 pointsA−1

To find candidates for  and  we can solve 


the (linear) set of equations given by

B C

(I, B, I) ⋆ t0 = (A−1, I, C−1) ⋆ T

28

 complexityO(n6)
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n q

14

22

30

4093

4093

2039

Time (s)

9.3

141.6

858.9

Runtime for the attack:
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There was only 1 rank-0 matrix: [
0 0 0
0 0 0
0 0 0]

Already for rank 1, there are too many matrices to check…

MinRank:
Given an integer  and  matrices , 

find integers  (not all zero) such that

r ∈ ℕ k M1, …Mk
x1, …xk

rank(x1M1 + … + xkMk) ≤ r
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 we were able to solve
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→

 for  the complexity 

quickly increases
→ r > 1
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T, (A, B, C, b)

v0, v1

= (A, B, C) ⋆ vb

random!

How can we ensure that  are generated randomly?v0, v1

 pseudo-random number generator→

 cryptographic hash function→

 trusted third party→
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T, (A, B, C, b)

v0, v1,

= (A, B, C) ⋆ vb

random!

 statistically binding→

 computationally hiding→

This gives a scheme that is

 complexity increases from  to → O(n3) O(n4)

v2, …vN
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Sometimes we will want to prove that we know a committed value without revealing it

v

(A, B, C)

T

h(A′ , B′ , C′ ) Prover: Verifier:
v, h, T

ch ∈ {0,1}

{(A′ , B′ , C′ ), ch = 0
(A′ A, B′ B, C′ C), ch = 1

 we need to keep  secret→ v
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