
Understanding and fighting
fault injections

with programming languages

Understanding and fighting
fault injections

with programming languages

Sébastien MICHELLAND (UGA/LCIS, Valence)

SemSécuÉlec seminar — September 27th, 2024



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

1

Context and plan

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 1/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Who are we ?

▶ Public research lab: Université Grenoble Alpes, in Valence.
▶ 3 teams (60+ researchers): computer science, automatics, electronics.

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 2/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

CTSYS team
Safety and security of embedded and distributed systems

Low-level

High-level

OS/applications
Secure protocols

Program analysis
Compilation

Hardware security
Fault attacks

(More people!)

Laure Gonnord Christophe Deleuze

Sébastien Michelland Clara Bourgeais

Vincent Beroulle David Hély

Valentin Egloff Maryam Esmailian
ARSENE

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 3/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Your (second) speaker of the day

Sébastien Michelland

▶ Master’s in theoretical C.S.; languages, compilers, formal proofs
▶ ... also a lot of embedded (kernel) programming
▶ Now 3rd-year Ph.D student at LCIS (with L. Gonnord and C. Deleuze)

▶ delighted to be here

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 4/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Outline

With a paper as running example [MDG24]:
(https://hal.science/hal-04438994)

Context
▶ “Fault attacks” are super complicated
▶ Must approximate with “fault models”
▶ By comparison, software is pure math

The difficulty
▶ Faults break software abstractions
▶ Must work around existing technology

Elements of solutions
▶ Modding semantics for security
▶ Software/hardware collaborations

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 5/31

https://hal.science/hal-04438994


Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

2

Faults and fault models

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 5/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Fault injections

Fault: abnormal condition leading to incorrect behavior

2 + 2 → briefly short-circuit the right pins → 5

Fault injection: creating a fault on purpose

Electromagnetic fault injection [Sol+21]

Power/clock glitches, lasers, EM pulses...

Challenges
▶ Can hardly predict outcomes
▶ Some consistent behaviors
▶ Many very rare and very weird behaviors

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 6/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Fault models

Fault model: approximate description of common fault behaviors

Examples:
▶ Invert an if() ◀ C source
▶ Corrupt program values ◀ IR-ish
▶ Skip instructions ◀ Assembly
▶ Cancel pipeline forwarding [Lau20] ◀ Micro-arch

Understandable

Accurate

Inherent tension
Fault models are always a compromise between accuracy and simplicity.

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 7/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

So how bad is it for security?
VERY.

Well-known attack on RSA [Bar+06]:

Message

Good signature s

Bad signature ŝ

Sign

Inject a fault!

GCD(s − ŝ,N) = Private key!

General vibe: by default you assume that everything will break.
▶ It won’t always, but the reasons why are subtle.

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 8/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

3

Rising in abstraction

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 8/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Fault models in software

▶ Fault model: instruction skip

int mac(int a, int b, int c) {
return a + b * c;

}

Compile with LLVM -O1 for RISC-V:

Normal C

Normal asm

compile

Faulted asm
fault

∃? Faulted C

compile

mac:
mul a1, a2, a1
add a0, a0, a1
ret

Equivalent C code if we...

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 9/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Fault models in software

▶ Fault model: instruction skip

int mac(int a, int b, int c) {
return a + b * c;

}

Compile with LLVM -O1 for RISC-V:

Normal C

Normal asm

compile

Faulted asm
fault

∃? Faulted C

compile

mac:
mul a1, a2, a1
add a0, a0, a1
ret

Equivalent C code if we...
▶ Skip mul: return a + b

▶ Skip add: return a

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 9/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Fault models in software

▶ Fault model: instruction skip

int mac(int a, int b, int c) {
return a + b * c;

}

Compile with LLVM -O1 for RISC-V:

Normal C

Normal asm

compile

Faulted asm
fault

∃? Faulted C

compile

mac:
mul a1, a2, a1
add a0, a0, a1
ret

Equivalent C code if we...
▶ Skip mul: return a + b

▶ Skip add: return a

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 9/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Fault models in software

▶ Fault model: instruction skip

int mac(int a, int b, int c) {
return a + b * c;

}

Compile with gcc -O1 for SuperH:

Normal C

Normal asm

compile

Faulted asm
fault

∃? Faulted C

compile

mac:
mul.l r6, r5
sts macl, r0
rts
add r4, r0

Equivalent C code if we...

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 9/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Fault models in software

▶ Fault model: instruction skip

int mac(int a, int b, int c) {
return a + b * c;

}

Compile with gcc -O1 for SuperH:

Normal C

Normal asm

compile

Faulted asm
fault

∃? Faulted C

compile

mac:
mul.l r6, r5
sts macl, r0
rts
add r4, r0

Equivalent C code if we...
▶ Skip mul.l: return a + <old_macl>

▶ Skip sts: return a + <old_r0>

▶ Skip add: return b * c

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 9/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Fault models in software

▶ Fault model: instruction skip

int mac(int a, int b, int c) {
return a + b * c;

}

Compile with gcc -O1 for SuperH:

Normal C

Normal asm

compile

Faulted asm
fault

∃? Faulted C

compile

mac:
mul.l r6, r5
sts macl, r0
rts
add r4, r0

Equivalent C code if we...
▶ Skip mul.l: return a + <old_macl>

▶ Skip sts: return a + <old_r0>

▶ Skip add: return b * c

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 9/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Fault models in software

▶ Fault model: instruction skip

int mac(int a, int b, int c) {
return a + b * c;

}

Compile with gcc -O1 for SuperH:

Normal C

Normal asm

compile

Faulted asm
fault

∃? Faulted C

compile

mac:
mul.l r6, r5
sts macl, r0
rts
add r4, r0

Equivalent C code if we...
▶ Skip mul.l: return a + <old_macl>

▶ Skip sts: return a + <old_r0>

▶ Skip add: return b * c

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 9/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Fault models in software

▶ Fault model: instruction skip

int mac(int a, int b, int c) {
return a + b * c;

}

Compile with gcc -O1 for SuperH:

Normal C

Normal asm

compile

Faulted asm
fault

∃? Faulted C

compile

mac:
mul.l r6, r5
sts macl, r0
rts
add r4, r0

Equivalent C code if we...
▶ Skip mul.l: return a + <old_macl>

▶ Skip sts: return a + <old_r0>

▶ Skip add: return b * c

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 9/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Fault models in software

▶ Fault model: instruction skip

int mac(int a, int b, int c) {
return a + b * c;

}

Compile with gcc -O1 for SuperH:

Normal C

Normal asm

compile

Faulted asm
fault

∃? Faulted C

compile

mac:
mul.l r6, r5
sts macl, r0
rts
add r4, r0

Equivalent C code if we...
▶ Skip mul.l: return a + <old_macl>

▶ Skip sts: return a + <old_r0>

▶ Skip add: return b * c

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 9/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Fault models in software

▶ Fault model: instruction skip

int mac(int a, int b, int c) {
return a + b * c;

}

Compile with gcc -O1 for SuperH:

Normal C

Normal asm

compile

Faulted asm
fault

∃? Faulted C

compile

mac:
mul.l r6, r5
sts macl, r0
rts
add r4, r0

Equivalent C code if we...
▶ Skip mul.l: return a + <old_macl>

▶ Skip sts: return a + <old_r0>

▶ Skip add: return b * c

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 9/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

At the core of the software stack: abstractions

Why is "return a + <old_r0>" not a valid C program?

Abstraction: act of simplifying notions by hiding irrelevant details
1. Abstraction hides system details from you
2. Abstraction controls these details for you

e.g. assembly registers become integer variables in C
▶ C allocates variables to registers/memory, you can’t choose
▶ C variables can (almost) never be used uninitialized

Fundamental problem

C only describes some CPU behaviors and "return a + <old_r0>" isn’t one of them.

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 10/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

At the core of the software stack: abstractions

Why is "return a + <old_r0>" not a valid C program?

Abstraction: act of simplifying notions by hiding irrelevant details
1. Abstraction hides system details from you
2. Abstraction controls these details for you

e.g. assembly registers become integer variables in C
▶ C allocates variables to registers/memory, you can’t choose
▶ C variables can (almost) never be used uninitialized

Fundamental problem

C only describes some CPU behaviors and "return a + <old_r0>" isn’t one of them.

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 10/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

At the core of the software stack: abstractions

Why is "return a + <old_r0>" not a valid C program?

Abstraction: act of simplifying notions by hiding irrelevant details
1. Abstraction hides system details from you
2. Abstraction controls these details for you

e.g. assembly registers become integer variables in C
▶ C allocates variables to registers/memory, you can’t choose
▶ C variables can (almost) never be used uninitialized

Fundamental problem

C only describes some CPU behaviors and "return a + <old_r0>" isn’t one of them.

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 10/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

At the core of the software stack: abstractions

Why is "return a + <old_r0>" not a valid C program?

Abstraction: act of simplifying notions by hiding irrelevant details
1. Abstraction hides system details from you
2. Abstraction controls these details for you

e.g. assembly registers become integer variables in C
▶ C allocates variables to registers/memory, you can’t choose
▶ C variables can (almost) never be used uninitialized

Fundamental problem

C only describes some CPU behaviors and "return a + <old_r0>" isn’t one of them.

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 10/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Reversing abstraction descent is approximate
Coverage (fictional)

C source code
...

Many compiler IRs
...

ISA/Assembly Skip an instruction 100%

Skip an IR instruction 85%

Skip a C statement 10%

Micro-architecture

Gates/RTL

Electrical signals

(software)

(hardware)

Glitch clock cycle

Fail to latch in time

Skip memory fetch

100%

85%?

50%?

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 11/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Reversing abstraction descent is approximate
Coverage (fictional)

C source code
...

Many compiler IRs
...

ISA/Assembly Skip an instruction 100%

Skip an IR instruction 85%

Skip a C statement 10%

Micro-architecture

Gates/RTL

Electrical signals

(software)

(hardware)

Glitch clock cycle

Fail to latch in time

Skip memory fetch

100%

85%?

50%?

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 11/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Reversing abstraction descent is approximate
Coverage (fictional)

C source code
...

Many compiler IRs
...

ISA/Assembly Skip an instruction 100%

Skip an IR instruction 85%

Skip a C statement 10%

Micro-architecture

Gates/RTL

Electrical signals

(software)

(hardware)

Glitch clock cycle

Fail to latch in time

Skip memory fetch

100%

85%?

50%?

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 11/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Reversing abstraction descent is approximate
Coverage (fictional)

C source code
...

Many compiler IRs
...

ISA/Assembly Skip an instruction 100%

Skip an IR instruction 85%

Skip a C statement 10%

Micro-architecture

Gates/RTL

Electrical signals

(software)

(hardware)

Glitch clock cycle

Fail to latch in time

Skip memory fetch

100%

85%?

50%?

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 11/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Reversing abstraction descent is approximate
Coverage (fictional)

C source code
...

Many compiler IRs
...

ISA/Assembly Skip an instruction 100%

Skip an IR instruction 85%

Skip a C statement 10%

Micro-architecture

Gates/RTL

Electrical signals

(software)

(hardware)

Glitch clock cycle

Fail to latch in time

Skip memory fetch

100%

85%?

50%?

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 11/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Reversing abstraction descent is approximate
Coverage (fictional)

C source code
...

Many compiler IRs
...

ISA/Assembly Skip an instruction 100%

Skip an IR instruction 85%

Skip a C statement 10%

Micro-architecture

Gates/RTL

Electrical signals

(software)

(hardware)

Glitch clock cycle

Fail to latch in time

Skip memory fetch

100%

85%?

50%?

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 11/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Reversing abstraction descent is approximate
Coverage (fictional)

C source code
...

Many compiler IRs
...

ISA/Assembly Skip an instruction 100%

Skip an IR instruction 85%

Skip a C statement 10%

Micro-architecture

Gates/RTL

Electrical signals

(software)

(hardware)

Glitch clock cycle

Fail to latch in time

Skip memory fetch

100%

85%?

50%?

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 11/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Reversing abstraction descent is approximate
Coverage (fictional)

C source code
...

Many compiler IRs
...

ISA/Assembly Skip an instruction 30%?

Skip an IR instruction 25%?

Skip a C statement 3%?

Micro-architecture

Gates/RTL

Electrical signals

(software)

(hardware)

Glitch clock cycle

Fail to latch in time

Skip memory fetch

100%

85%?

50%?

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 11/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Morality: the cost of rising in abstraction

Rising in abstraction is difficult and approximate.
▶ Hence the simplicity/accuracy compromise for fault models

Approximating undermines security guarantees:
▶ Software protections for models at assembly level bypassed with micro-arch abuse.

[Yuc+16]

Key target

We wish for models and countermeasures that minimize abstraction lifts.

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 12/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Language semantics to the rescue

C source code
...

Many compiler IRs
...

ISA/Assembly (software)

(hardware)
Micro-architecture

Gates/RTL

Electrical signals

Behavior defined by
physical objects and
physical equations

Behavior defined by
program code and
language rules

ALIGNED-16
PC aligned fetch32(PC) = d
LSH(d) is a 16-bit instruction
⟨PC, α⟩ → JLSH(d)K(PC, α)

Semantic rules

Express security
identically, with
no approximations?

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 13/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Language semantics to the rescue

C source code
...

Many compiler IRs
...

ISA/Assembly (software)

(hardware)
Micro-architecture

Gates/RTL

Electrical signals

Behavior defined by
physical objects and
physical equations

Behavior defined by
program code and
language rules

ALIGNED-16
PC aligned fetch32(PC) = d
LSH(d) is a 16-bit instruction
⟨PC, α⟩ → JLSH(d)K(PC, α)

Semantic rules

Express security
identically, with
no approximations?

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 13/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Language semantics to the rescue

C source code
...

Many compiler IRs
...

ISA/Assembly (software)

(hardware)
Micro-architecture

Gates/RTL

Electrical signals

Behavior defined by
physical objects and
physical equations

Behavior defined by
program code and
language rules

ALIGNED-16
PC aligned fetch32(PC) = d
LSH(d) is a 16-bit instruction
⟨PC, α⟩ → JLSH(d)K(PC, α)

Semantic rules

Express security
identically, with
no approximations?

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 13/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Language semantics to the rescue

C source code
...

Many compiler IRs
...

ISA/Assembly (software)

(hardware)
Micro-architecture

Gates/RTL

Electrical signals

Behavior defined by
physical objects and
physical equations

Behavior defined by
program code and
language rules

ALIGNED-16
PC aligned fetch32(PC) = d
LSH(d) is a 16-bit instruction
⟨PC, α⟩ → JLSH(d)K(PC, α)

Semantic rules

Express security
identically, with
no approximations?

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 13/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Language semantics to the rescue

C source code
...

Many compiler IRs
...

ISA/Assembly (software)

(hardware)
Micro-architecture

Gates/RTL

Electrical signals

Behavior defined by
physical objects and
physical equations

Behavior defined by
program code and
language rules

ALIGNED-16
PC aligned fetch32(PC) = d
LSH(d) is a 16-bit instruction
⟨PC, α⟩ → JLSH(d)K(PC, α)

Semantic rules

Express security
identically, with
no approximations?

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 13/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

In an ideal world...

We’d love to:
1. Stop fault models’ approximations at assembly level or lower
2. Let software’s math handle the complexity of generating secure code

In practice, still:
▶ Theoretical foundations for secure code generation not yet complete
▶ The math works on C and not much lower
▶ Older tech (languages/compilers) is not helping

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 14/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

In an ideal world...

We’d love to:
1. Stop fault models’ approximations at assembly level or lower
2. Let software’s math handle the complexity of generating secure code

In practice, still:
▶ Theoretical foundations for secure code generation not yet complete
▶ The math works on C and not much lower
▶ Older tech (languages/compilers) is not helping

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 14/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

4

Fetch skips

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 14/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

What the paper’s about

▶ Study a low-level fault model
▶ “Fetch skips”, more accurate than instruction skips

▶ Design a proven countermeasure, aware of low-level behaviors
▶ Implemented in LLVM/ld, tested in QEMU

▶ Based on compiler/hardware collaboration

Novelties?
▶ Countermeasure to low-level model. NEW

▶ Semantic model for proof. NEW

▶ Multi-step hardening with compiler and linker. NEW

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 15/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Mechanisms of a low-level fault model: fetch skips.

Aligned Unaligned

c.addi sp, sp, -16 c.sw ra, 12(sp)

c.addi sp, sp, -16 c.sw ra, 12(sp)

call f (call cont.)

call f (call cont.)

c.addi a0, a0, 1 lw ra, 12(sp)

c.addi a0, a0, 1 lw ra, 12(sp)

(lw cont.) addi sp, sp, 16

(lw cont.) addi sp, sp, 16c.addi a0, a0, 1 lw ra, 12(sp)

(addi cont.) c.ret

g:

S32

g+4:

S32

g+8:

S32

g+12:

S32S&R32
▼ ▼

g+16:

lw ra, 16(sp)

int g(int x) {
return f(x) + 1;

}

16-bit instructions
Aligned 32-bit instructions
Unaligned 32-bit instructions

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 16/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Mechanisms of a low-level fault model: fetch skips.

Aligned Unaligned

c.addi sp, sp, -16 c.sw ra, 12(sp)

c.addi sp, sp, -16 c.sw ra, 12(sp)

call f (call cont.)

call f (call cont.)

c.addi a0, a0, 1 lw ra, 12(sp)

c.addi a0, a0, 1 lw ra, 12(sp)

(lw cont.) addi sp, sp, 16(lw cont.) addi sp, sp, 16

c.addi a0, a0, 1 lw ra, 12(sp)

(addi cont.) c.ret

g:

S32

g+4:

S32

g+8:

S32

g+12:S32

S&R32
▼ ▼

g+16:

lw ra, 16(sp)

Microarchitectural-level

▶ Skip 32 bits:
Skip a full row.

▶ Skip and repeat 32 bits:
Replace a row with predecessor.

Found by Alshaer et al. [Als+22]

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 16/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Mechanisms of a low-level fault model: fetch skips.

Aligned Unaligned

c.addi sp, sp, -16 c.sw ra, 12(sp)

c.addi sp, sp, -16 c.sw ra, 12(sp)

call f (call cont.)

call f (call cont.)

c.addi a0, a0, 1 lw ra, 12(sp)

c.addi a0, a0, 1 lw ra, 12(sp)

(lw cont.) addi sp, sp, 16

(lw cont.) addi sp, sp, 16c.addi a0, a0, 1 lw ra, 12(sp)

(addi cont.) c.ret

g:

S32

g+4:

S32

g+8:

S32

g+12:

S32S&R32
▼ ▼

g+16:

lw ra, 16(sp)

Annoying consequences:
▶ Skip one instruction
▶ Skip two instructions
▶ Corrupt parameters
▶ Craft a new instruction
▶ Craft multiple instructions (!)

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 16/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Mechanisms of a low-level fault model: fetch skips.

Aligned Unaligned

c.addi sp, sp, -16 c.sw ra, 12(sp)

c.addi sp, sp, -16 c.sw ra, 12(sp)

call f (call cont.)

call f (call cont.)

c.addi a0, a0, 1 lw ra, 12(sp)

c.addi a0, a0, 1 lw ra, 12(sp)

(lw cont.) addi sp, sp, 16

(lw cont.) addi sp, sp, 16c.addi a0, a0, 1 lw ra, 12(sp)

(addi cont.) c.ret

g:

S32

g+4:

S32

g+8:

S32

g+12:

S32S&R32
▼ ▼

g+16:

lw ra, 16(sp)

Annoying consequences:
▶ Skip one instruction
▶ Skip two instructions
▶ Corrupt parameters
▶ Craft a new instruction
▶ Craft multiple instructions (!)

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 16/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Mechanisms of a low-level fault model: fetch skips.

Aligned Unaligned

c.addi sp, sp, -16 c.sw ra, 12(sp)

c.addi sp, sp, -16 c.sw ra, 12(sp)

call f (call cont.)

call f (call cont.)

c.addi a0, a0, 1 lw ra, 12(sp)

c.addi a0, a0, 1 lw ra, 12(sp)

(lw cont.) addi sp, sp, 16

(lw cont.) addi sp, sp, 16

c.addi a0, a0, 1 lw ra, 12(sp)

(addi cont.) c.ret

g:

S32

g+4:

S32

g+8:

S32

g+12:

S32

S&R32
▼ ▼

g+16:

lw ra, 16(sp)

Annoying consequences:
▶ Skip one instruction
▶ Skip two instructions
▶ Corrupt parameters
▶ Craft a new instruction
▶ Craft multiple instructions (!)

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 16/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Mechanisms of a low-level fault model: fetch skips.

Aligned Unaligned

c.addi sp, sp, -16 c.sw ra, 12(sp)

c.addi sp, sp, -16 c.sw ra, 12(sp)

call f (call cont.)

call f (call cont.)

c.addi a0, a0, 1 lw ra, 12(sp)

c.addi a0, a0, 1 lw ra, 12(sp)

(lw cont.) addi sp, sp, 16

(lw cont.) addi sp, sp, 16c.addi a0, a0, 1 lw ra, 12(sp)

(addi cont.) c.ret

g:

S32

g+4:

S32

g+8:

S32

g+12:

S32S&R32
▼ ▼

g+16:

lw ra, 16(sp)

Annoying consequences:
▶ Skip one instruction
▶ Skip two instructions
▶ Corrupt parameters
▶ Craft a new instruction
▶ Craft multiple instructions (!)

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 16/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Mechanisms of a low-level fault model: fetch skips.

Aligned Unaligned

c.addi sp, sp, -16 c.sw ra, 12(sp)

c.addi sp, sp, -16 c.sw ra, 12(sp)

call f (call cont.)

call f (call cont.)

c.addi a0, a0, 1 lw ra, 12(sp)

c.addi a0, a0, 1 lw ra, 12(sp)

(lw cont.) addi sp, sp, 16

(lw cont.) addi sp, sp, 16c.addi a0, a0, 1 lw ra, 12(sp)

(addi cont.) c.ret

g:

S32

g+4:

S32

g+8:

S32

g+12:

S32S&R32
▼ ▼

g+16:

lw ra, 16(sp)

Annoying consequences:
▶ Skip one instruction
▶ Skip two instructions
▶ Corrupt parameters
▶ Craft a new instruction
▶ Craft multiple instructions (!)

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 16/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

We need to talk about security
... what is it?!

The countermeasure should make the program “secure”.

Unresolved open problem

There is no single definition of security. It depends on the application.

Common examples: we may need that, in the event of a fault...
▶ The program operates as if not faulted
▶ The attack is detected and reported
▶ The program does not leak passwords
▶ ...

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 17/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

What security property can we achieve here?

▶ We inherently can’t prevent the attack altogether.
▶ Ideally: recovery, clean detection
▶ Here: denial of exploitation

Fetch skips hardening property

After a fetch skip, the program will stop/crash before the end of the current block.

How?
1. Hardware will compute a checksum of each executed block.
2. Software will compare with expected value.

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 18/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

What security property can we achieve here?

▶ We inherently can’t prevent the attack altogether.
▶ Ideally: recovery, clean detection
▶ Here: denial of exploitation

Fetch skips hardening property

After a fetch skip, the program will stop/crash before the end of the current block.

How?
1. Hardware will compute a checksum of each executed block.
2. Software will compare with expected value.

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 18/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

5

The countermeasure

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 18/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

The countermeasure: software / hardware opcode checksums.

Original block, except jump

Original jump

c.addi sp, sp, -16 c.sw ra, 12(sp)

ccscall NEW (ccscall cont.)

0x354c 0xc606

call f (call cont.)

c.ebreak c.ebreak

c.ebreak c.ebreak

g:

g+4:

g+8:

g+12:

g+16:

g+24:

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 19/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

The countermeasure: software / hardware opcode checksums.

Original block, except jump

Original jump

Checksum test (needed to jump )
Sum of lines computed by linker.
Exception if mismatch at runtime.

Wall of trap instructions
Added by compiler.
Prevents escape from block.

c.addi sp, sp, -16 c.sw ra, 12(sp)

ccscall NEW (ccscall cont.)

0x354c 0xc606

call f (call cont.)

c.ebreak c.ebreak

c.ebreak c.ebreak

g:

g+4:

g+8:

g+12:

g+16:

g+24:

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 19/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

The countermeasure: software / hardware opcode checksums.

Binary encoding:

41 11 06 c6

+ 0b 24 00 00

= 4c 35 06 c6

c.addi sp, sp, -16 c.sw ra, 12(sp)

ccscall NEW (ccscall cont.)

0x354c 0xc606

call f (call cont.)

c.ebreak c.ebreak

c.ebreak c.ebreak

g:

g+4:

g+8:

g+12:

g+16:

g+24:

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 19/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

The countermeasure: software / hardware opcode checksums.

Intuition for security:

Hardware traps on jump
unless the previous instruction
was ccs/ccscall and it passed.

Too long to be jumped over (12 bytes)

c.addi sp, sp, -16 c.sw ra, 12(sp)

ccscall NEW (ccscall cont.)

0x354c 0xc606

call f (call cont.)

c.ebreak c.ebreak

c.ebreak c.ebreak

g:

g+4:

g+8:

g+12:

g+16:

g+24:

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 19/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Key design points

[Hardware] RISC-V ISA extension:
▶ Updates a checksum register for each instruction executed
▶ One instruction for checksum tests, required before a jump
▶ As tiny as it gets

[Software] Compiler and linker:
▶ Provides checksum code and walls
▶ Linker computes checksums and shuts down two attacks by avoiding values that

decode as jumps or checksum instructions

NEW

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 20/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Key design points

[Hardware] RISC-V ISA extension:
▶ Updates a checksum register for each instruction executed
▶ One instruction for checksum tests, required before a jump
▶ As tiny as it gets

[Software] Compiler and linker:
▶ Provides checksum code and walls
▶ Linker computes checksums and shuts down two attacks by avoiding values that

decode as jumps or checksum instructions NEW

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 20/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Come on, hardware support?!

This is a reasonable proposition:

▶ Security is in the hardware design process
▶ Industrials are seeking ways to improve their hardware

▶ RISC-V is uniquely extensible/modular

▶ These are tricky attacks with (currently) no other solutions
▶ There’s a rich “compromise” space mostly unexplored

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 21/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Formalizing with semantics

Faulted executions are tricky: formal analysis is a necessity.
▶ Big idea: extend the semantics of assembler! NEW

▶ Clears the abstraction gap
▶ Pulls in only low-level details that are really needed

NOFAULT

(PC, ρ) a ⇒ [a] (PC, [a])

S32(k) 1 < k ≤ N

(PC, ρ) a ⇒ [a+ 4k] (PC + 4k, [a+ 4k])

S&R32 ρ ̸= [a]

(PC, ρ) a ⇒ ρ (PC, [a])

▶ Fetch rules (left): describe the attack
▶ Step rules (below): decoding and execution

ALIGNED-16
PC aligned (PC, ρ) PC ⇒ d (PCF , ρ

′)

σ.CCSDS = 0 LSH(d) is a 16-bit instruction1

⟨PC, ρ, σ, α⟩ → JLSH(d)K(PCF , σ, α) • ρ′

(...)

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 22/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Proof of security

Proven security guarantee

If you fetch skip, the program will stop/crash before the end of the current block.
Same for multi-fault attacks (if no checksum collision).

1. Execution only leaves a protected block when the checksum is correct.
▶ Cannot reach end of block due to trap wall.
▶ Before jumping a ccs is needed, and it can’t be forged.
▶ The official ccs/jump widget detects attacks.

2. Single-fault case: correct checksum implies no fault.

Note: might crash before end of block.

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 23/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

6

Implementation

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 23/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Compilers don’t know security (because C doesn’t)

int mac(int a, int b, int c) {
return a + b * c;

}

Compiled for RISC-V again:

mac:
mul a1, a2, a1
add a0, a0, a1
ret

▶ Vulnerable to instruction skip

▶ Now secure!

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 24/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Compilers don’t know security (because C doesn’t)

mac:
mul a3, a2, a1
mul a3, a2, a1
mv a4, a0
mv a4, a0
add a0, a4, a3
add a0, a4, a3
ret
ret

▶ Vulnerable to instruction skip
A countermeasure: duplicate instructions.
▶ Now secure!

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 24/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Compilers don’t know security (because C doesn’t)

int mac(int a, int b, int c) {
int x, y;
x = b * c;
x = b * c;
y = a;
y = a;
a = y + x;
a = y + x;
return a;
return a;

}

▶ Vulnerable to instruction skip
A countermeasure: duplicate instructions.
▶ Now secure!
▶ Not expressible at source level

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 24/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Compilers don’t know security (because C doesn’t)

int mac(int a, int b, int c) {
int x, y;
x = b * c;
x = b * c;
y = a;
y = a;
a = y + x;
a = y + x;
return a;
return a;

}
mac:

mul a1, a2, a1
add a0, a0, a1
retLLVM -O1

▶ Vulnerable to instruction skip
A countermeasure: duplicate instructions.
▶ Now secure!
▶ Not expressible at source level
▶ Compiler optimizes it away

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 24/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Implementation: a multi-stage process

clang

C source code

LLVM

LLVM IR

SelectionDAG

Machine IR
Object code

Libraries Runtime
GNU ld

Executable code

MachineFunctionPass: ccs/trap emission + alignment

Static relaxation: code size bounded
Emitter: Late jump expansion + relocation emission

Relocation: Checksum computation and adjustment

clang --target=riscv32 -march=rv32gc -mabi=ilp32d
-mcpu=generic-rv32-fsh
-mllvm --riscv-enable-fetch-skips-hardening
-c main.c -o main.o -O1

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 25/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Experimental validation by simulation

▶ QEMU support for XCCS and fetch skip injection

% qemu-riscv32 -cpu rv32-fsh --riscv-faults '0x40000:s32' ./main
qemu: unhandled CPU exception 0x18 -aborting [...]

0x18: Attack detected

▶ -cpu rv32-fsh selects an XCCS-capable CPU ;
▶ –riscv-faults ’0x40000:s32’ skips the first 4 bytes.

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 26/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Experimental validation by simulation

MiBench [Gut+01] benchmarks
1. Exhaustive skip
2. Exhaustive double-skip
3. Exhaustive skip-and-repeat
R. 2000 random multi-faults

Attack succeeded (0)
Attack detected (∼75%)
Segfault
Other crash

▶ 9 programs, 32’000 attacks reached, 0 bypass (0 checksum collision)
▶ Cost: ∼10% time, average x2.46 space (similar work: x5 time and space)

These are very good because of the software/hardware combo!

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 27/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

7

Conclusion

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 27/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Putting it all together
C source code

...
Many compiler IRs

...
ISA/Assembly

Micro-architecture

Gates/RTL

Electrical signals

Model: Glitch clock cycle

Model: Fail to latch in time

Model: Skip memory fetch

Fault analysis
and modeling

Security prop: true

Security prop: (internal definitions)

Security prop: stop before end of block

Security
specification,
hardening
compilation

ISA + encoding + fetch Security proof wrt model

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 28/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Putting it all together
C source code

...
Many compiler IRs

...
ISA/Assembly

Micro-architecture

Gates/RTL

Electrical signals Model: Glitch clock cycle

Model: Fail to latch in time

Model: Skip memory fetch

Fault analysis
and modeling

Security prop: true

Security prop: (internal definitions)

Security prop: stop before end of block

Security
specification,
hardening
compilation

ISA + encoding + fetch Security proof wrt model

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 28/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Putting it all together
C source code

...
Many compiler IRs

...
ISA/Assembly

Micro-architecture

Gates/RTL

Electrical signals Model: Glitch clock cycle

Model: Fail to latch in time

Model: Skip memory fetch

Fault analysis
and modeling

Security prop: true

Security prop: (internal definitions)

Security prop: stop before end of block

Security
specification,
hardening
compilation

ISA + encoding + fetch Security proof wrt model

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 28/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Putting it all together
C source code

...
Many compiler IRs

...
ISA/Assembly

Micro-architecture

Gates/RTL

Electrical signals Model: Glitch clock cycle

Model: Fail to latch in time

Model: Skip memory fetch

Fault analysis
and modeling

Security prop: true

Security prop: (internal definitions)

Security prop: stop before end of block

Security
specification,
hardening
compilation

ISA + encoding + fetch Security proof wrt model

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 28/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Understanding and fighting
fault injections

with programming languages

Understanding:
▶ All a matter of crossing abstractions the right way, with formal support

Fighting:
▶ Software fights for half the abstraction distance with hardening compilation
▶ Software/hardware combo has a lot to offer
▶ Deeper toolchain integration needed [Vu21]

Thoughts?

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 29/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Understanding and fighting
fault injections

with programming languages

Understanding:
▶ All a matter of crossing abstractions the right way, with formal support

Fighting:
▶ Software fights for half the abstraction distance with hardening compilation
▶ Software/hardware combo has a lot to offer
▶ Deeper toolchain integration needed [Vu21]

Thoughts?

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 29/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Understanding and fighting
fault injections

with programming languages

Understanding:
▶ All a matter of crossing abstractions the right way, with formal support

Fighting:
▶ Software fights for half the abstraction distance with hardening compilation
▶ Software/hardware combo has a lot to offer
▶ Deeper toolchain integration needed [Vu21]

Thoughts?

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 29/31



Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

Understanding and fighting
fault injections

with programming languages

Understanding:
▶ All a matter of crossing abstractions the right way, with formal support

Fighting:
▶ Software fights for half the abstraction distance with hardening compilation
▶ Software/hardware combo has a lot to offer
▶ Deeper toolchain integration needed [Vu21]

Thoughts?

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 29/31



References

References I

[Als+22] Ihab Alshaer et al. “Variable-Length Instruction Set: Feature or Bug?” In: Maspalomas,
Spain. IEEE, 2022. ISBN: 978-1-6654-7405-4. DOI: 10.1109/DSD57027.2022.00068.

[Bar+06] H. Bar-El et al. “The Sorcerer’s Apprentice Guide to Fault Attacks”. In: Proceedings of the
IEEE 94.2 (2006), pp. 370–382. DOI: 10.1109/JPROC.2005.862424.

[Gut+01] M.R. Guthaus et al. “MiBench: A free, commercially representative embedded benchmark
suite”. In: Austin, TX, USA. Austin, TX, USA: IEEE, 2001, pp. 3–14. ISBN: 0-7803-7315-4.
DOI: 10.1109/WWC.2001.990739.

[Lau20] Johan Laurent. “Modélisation de fautes utilisant la description RTL de microarchitectures
pour l’analyse de vulnérabilité conjointe matérielle-logicielle”. Theses. Université Grenoble
Alpes, Nov. 2020. URL: https://tel.archives-ouvertes.fr/tel-03167493.

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 30/31

https://doi.org/10.1109/DSD57027.2022.00068
https://doi.org/10.1109/JPROC.2005.862424
https://doi.org/10.1109/WWC.2001.990739
https://tel.archives-ouvertes.fr/tel-03167493


References

References II

[MDG24] Sébastien Michelland, Christophe Deleuze, and Laure Gonnord. “From Low-Level Fault
Modeling (of a Pipeline Attack) to a Proven Hardening Scheme”. In: Proceedings of the
33rd ACM SIGPLAN International Conference on Compiler Construction. CC 2024. ,
Edinburgh, United Kingdom, Association for Computing Machinery, 2024, pp. 174–185.
ISBN: 9798400705076. DOI: 10.1145/3640537.3641570. URL:
https://doi.org/10.1145/3640537.3641570.

[Sol+21] Hadi Soleimany et al. “Practical multiple persistent faults analysis”. In: Cryptology ePrint
Archive (2021).

[Vu21] Son Tuan Vu. “Optimizing Property-Preserving Compilation”. 2021SORUS435. PhD thesis.
2021. URL: http://www.theses.fr/2021SORUS435/document.

[Yuc+16] Bilgiday Yuce et al. “Software Fault Resistance is Futile: Effective Single-Glitch Attacks”. In:
Santa Barbara, CA, USA. Santa Barbara, CA, USA: IEEE, 2016, pp. 47–58. ISBN:
978-1-5090-1109-4. DOI: 10.1109/FDTC.2016.21.

SemSécuÉlec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 31/31

https://doi.org/10.1145/3640537.3641570
https://doi.org/10.1145/3640537.3641570
http://www.theses.fr/2021SORUS435/document
https://doi.org/10.1109/FDTC.2016.21

	Context and plan
	Faults and fault models
	Rising in abstraction
	Fetch skips
	The countermeasure
	Implementation
	Conclusion
	Appendix
	References


