Understanding and fighting

fault injections
with programming languages

Sébastien MICHELLAND (UGA/LCIS, Valence)
SemSécuElec seminar — September 27th, 2024

Université
\/ de la recherche Grenoble Alpes

FRA@ PROGRAMME U anr U ‘ A
zzzzzzzzzzz
r@ agence nationale

Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion
[e]e]e]e} 000 [e]e]e]e]e]e) [e]e]e]e} 00000 [e]e]e]e} [e]e]

Context and plan

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 1/31

Context and plan ode S in abstraction tch skips The countern e nentation nclusion

0000

Who are we ?

LCIS

Laboratoire de Conception
et d'Intégration des Systemes

» Public research lab: Université Grenoble Alpes, in Valence.

> 3 teams (60+ researchers): computer science, automatics, electronics.

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 2/31

Context and plan
[e] lele}

CTSYS team
Safety and security of embedded and distributed systems
High-level

OS/applications

\
(More people!)
Secure protocols

@ Laure Gonnord @ Christophe Deleuze JA*F
@ Sébastien Michelland “— Clara Bourgeais

e Vincent Beroulle David Hély U

Hardware security ©

Fault attacks C-Vv
@ Valentin Egloff a Maryam Esmailian
' ARSENE

Program analysis
Compilation

Low-level

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 3/31

Context and plan Modeling faults 3 abstraction untermeasure Implementation

[e]e] o]

Your (second) speaker of the day

@ Sébastien Michelland

» Master's in theoretical C.S.; languages, compilers, formal proofs
» ... also a lot of embedded (kernel) programming
» Now 3rd-year Ph.D student at LCIS (with L. Gonnord and C. Deleuze)

> delighted to be here &

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 4/31

Context and plan
[o]e]

Outline

With a paper as running example [MDG24]: Context

(https://hal.science/hal-04438994)

» “Fault attacks” are super complicated

» Must approximate with “fault models”

» By comparison, software is pure math

From low-level fault modeling (of a pipeline attack) to
a proven hardening scheme

The difficulty

Sébastien Michelland Christophe Deleuze Laure Gonnord
" hristaph i

npfr I inpfr

inpft UGA, Grenoble INF, LCIS UGA. Grenoble INF, LCIS
UGA, Grenoble INP, 1CIS. Valence, France Valenee, France

Valence, France

Abstract

Fault attacks present unique safety and sceurity challenges
that sequire dedicated countermeasures, even for bug-free
programs. Models of these complex attacks are made work-
able by approximating their effects to a suitable level of

faults” effects to a desired level of abstraction. These span
from bit flips in RTL (Register Transfer Level) latches [Tollec
et al. 2022] to failures in pipeline forwarding [Lurent 2020]
to carrupted ISA registers (Barthe 014) and branch
inversion directly in source code [F
then based on these model

s 2014]. Coun-

abstraction, geting the Instruc-
tion Set Architecture (ISA) level isn't ideal because it dis-
eards important micro-srchitectural information, lesding,
to weaker security guarantees. Conversely, including micro-

secure programs resist fuult models cather than fauls, The
clear trade-off s one of accuracy versus sitplicitys ow-level
descriptions are mote true 1o practical attacks, but high-level
it practical (in many cases possible)to

and reason about, creating a new challenge in validating and
trusting protections.

We show that a semantic approach to medeling faults
‘makes micro-architectural models workable, and enables
precise cooperation between software and hardware in the.

reason about and protect against them.

In practice, most existing works study faults at the ISA
level, based on mis-exeeutions of assembler progeams (in-
struclion skips, wrong jumps, corrupled registers, et [Holler
ctal. 2015]), with countermeasures as transformations of as-

design approach by
designing and implementing: » compiler/hardware counter-
measure, which protects against a stale-of-the-arl pipeline
fetch attack that generalizes multi-foult instrustion skips.
Crucially, we provide a formal security proof that guaran-
tees faults are detected by the end of every basic block. This
result shows that carefilly embracing the complexity of low-
o

ahloc finar

SemSécuElec Seminar (Rennes, 2024-09-27)

programs, This isanatural choice asassembler isthe
lowest software abstraction, and dealing with software has
henelits such as ease of deplayment, board-independence,
compiler automation, and the sbility to protect only aritical
scctions of programs (compared.to fixed costs

face). Hardware protections
common, bul betler equipped
side-channel attacks [Tillich

| which share many

» Faults break software abstractions

» Must work around existing technology

Elements of solutions

» Modding semantics for security

» Software/hardware collaborations

Understanding and fighting fault injections with programming languages

5/31

https://hal.science/hal-04438994

Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion
[e]e]e]e} 000 [e]e]e]e]e]e) [e]e]e]e} 00000 [e]e]e]e} [e]e]

Faults and fault models

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 5/31

Modeling faults
@00

Fault injections
Fault: abnormal condition leading to incorrect behavior
2 + 2 — briefly short-circuit the right pins — 5

Fault injection: creating a fault on purpose

Power/clock glitches, lasers, EM pulses...

i Challenges
» Can hardly predict outcomes

» Some consistent behaviors

» Many very rare and very weird behaviors

5

Electromagnetic fault injection [Sol+21]

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 6/31

Modeling faults
(o] le}

Fault models

Fault model: approximate description of common fault behaviors

Examples:

» Invert an if() <« C source Understandable
» Corrupt program values <« IR-ish

» Skip instructions <« Assembly

» Cancel pipeline forwarding [Lau20] <« Micro-arch Accurate

Inherent tension

Fault models are always a compromise between accuracy and simplicity.

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 7/31

>ntext and plan Modeling faults ising in abstraction Fetch skips The countermeasure Implementation
) ocoe 5 o C 00000 0000

Conclusion

So how bad is it for security?
VERY.

Well-known attack on RSA [Bar+-06]:

Sign

| Good signature s —l

Message GCD(s — 5, N) = Private key! @@

| . Bad signature § f
Inject a fault!

General vibe: by default you assume that everything will break.

» It won't always, but the reasons why are subtle.

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 8/31

Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion
[e]e]e]e} 000 [e]e]e]e]e]e) [e]e]e]e} 00000 [e]e]e]e} [e]e]

©
Rising in abstraction

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 8/31

xt and plan \ ling faults Rising in abstraction skips ountermeasure nentation

@00000

Fault models in software
» Fault model: instruction skip

int mac(int a, int b, int c) {
return a + b * c;

}
Compile with LLVM -01 for RISC-V:

L Equivalent C code if we...
mul al, a2, al
add a0, a0, al
ret

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 9/31

xt and plan \ ling faults Rising in abstraction skips ountermeasure nentation

@00000

Fault models in software
» Fault model: instruction skip

int mac(int a, int b, int c) {
return a + b * c;

}
Compile with LLVM -01 for RISC-V:

L Equivalent C code if we...
fitt———at—az2,—at .
add aO: aO: i » Skip mul: return a + b
ret

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 9/31

xt and plan \ ling faults Rising in abstraction skips ountermeasure nentation

@00000

Fault models in software
» Fault model: instruction skip

int mac(int a, int b, int c) {
return a + b * c;

}
Compile with LLVM -01 for RISC-V:

mac: Equivalent C code if we...
mul al, az, al » Skip mul: return a + b
add—a0,—ad,—=at
ret » Skip add: return a

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 9/31

xt and plan \ ling faults Rising in abstraction
00000

ountermeasure nentation

Fault models in software
» Fault model: instruction skip

int mac(int a, int b, int c) {
return a + b * c;

}

Compile with gcc -01 for SuperH:

L Equivalent C code if we...
mul.l ré, r5

sts macl, ro
rts
add rd, ro

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 9/31

xt and plan ling faults Rising in abstraction
00000

ountermeasure

nentation

Fault models in software
» Fault model: instruction skip

int mac(int a, int b, int c) {
return a + b * c;

}

Compile with gcec -01 for SuperH:
mac:

Equivalent C code if we...
e+ 6—+5

» Skip mul.l: return a + <old_macl>
sts macl, ro
rts

add rd, ro

SemSécuElec Seminar (Rennes, 2024-09-27)

Understanding and fighting fault injections with programming languages 9/31

xt and plan \ ling faults Rising in abstraction skips ountermeasure nentation

@00000

Fault models in software
» Fault model: instruction skip
int mac(int a, int b, int c) {

return a + b * c;

}

Compile with gcec -01 for SuperH:

L Equivalent C code if we...
mul.1 ré, rs » Skip mul.l: return a + <old_macl>
sts——maeclk;,—r@
- » Skip sts: return a + <old_ro>
add rd, ro

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 9/31

xt and plan ling faults Rising in abstraction

skips ountermeasure
©00000 (> o O

nentation

Fault models in software
» Fault model: instruction skip

int mac(int a, int b, int c) {
return a + b * c;

}

Compile with gcec -01 for SuperH:
mac:

mul.1l ré, rd » Skip mul.l: return a + <old_macl>
sts macl, ro

Equivalent C code if we...

o » Skip sts: return a + <old_ro>
add———r4—+0 » Skip add: return b * ¢

SemSécuElec Seminar (Rennes, 2024-09-27)

Understanding and fighting fault injections with programming languages 9/31

xt and plan

ling faults Rising in abstraction

skips ountermeasure
©00000 (> o O

Fault models in software
» Fault model: instruction skip Normal C
int mac(int a, int b, int c) {
return a + b * c; compile
}
Compile with gcec -01 for SuperH: Normal asm
L Equivalent C code if we...
mul.1 ré, rs » Skip mul.l: return a + <old_macl>
sts macl, re)
- » Skip sts: return a + <old_ro>
add——————r4—r0 » Skip add: return b * ¢

SemSécuElec Seminar (Rennes, 2024-09-27)

Understanding and fighting fault injections with programming languages

9/31

xt and plan

ling faults Rising in abstraction

skips ountermeasure
©00000 (> o O

Fault models in software
» Fault model: instruction skip Normal C
int mac(int a, int b, int c) {
return a + b * c; compile
}
fault
Compile with gcec -01 for SuperH: Normal asm > Faulted asm
L Equivalent C code if we...
mul.1 ré, rs » Skip mul.l: return a + <old_macl>
sts macl, re)
- » Skip sts: return a + <old_ro>
add——————r4—r0 » Skip add: return b * ¢

SemSécuElec Seminar (Rennes, 2024-09-27)

Understanding and fighting fault injections with programming languages 9/31

t and plan ng faults Rising in abstraction untermeasure Implementation

Fault models in software

» Fault model: instruction skip

Normal C 37 Faulted C
int mac(int a, int b, int c) { E
return a + b * c; compile ' compile
} |
fault ¥
Compile with gcec -01 for SuperH: Normal asm > Faulted asm
L Equivalent C code if we...
mul.1 ré, rs » Skip mul.l: return a + <old_macl>
sts macl, re)
- » Skip sts: return a + <old_ro>
add——————r4—r0 » Skip add: return b * ¢

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 9/31

[e] JeleJele]
At the core of the software stack: abstractions

Why is "return a + <old_ro>" not a valid C program?

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 10/31

t and plan Modeling faults Rising in abstraction untermeasure Implementation

O@0000

At the core of the software stack: abstractions

Why is "return a + <old_ro>" not a valid C program?

Abstraction: act of simplifying notions by hiding irrelevant details
1. Abstraction hides system details from you

2. Abstraction controls these details for you

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 10/31

Context and plan

ng faults Rising in abstraction Fetch skips The
0®0000 0000 o

ountermeasure Implementation

At the core of the software stack: abstractions

Why is "return a + <old_ro>" not a valid C program?
Abstraction: act of simplifying notions by hiding irrelevant details

1. Abstraction hides system details from you

2. Abstraction controls these details for you

e.g. assembly registers become integer variables in C
» C allocates variables to registers/memory, you can't choose

» C variables can (almost) never be used uninitialized

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 10/31

[e] JeleJele]
At the core of the software stack: abstractions

Why is "return a + <old_ro>" not a valid C program?
Abstraction: act of simplifying notions by hiding irrelevant details

1. Abstraction hides system details from you
2. Abstraction controls these details for you

e.g. assembly registers become integer variables in C
» C allocates variables to registers/memory, you can't choose

» C variables can (almost) never be used uninitialized

Fundamental problem

C only describes some CPU behaviors and "return a + <old_r@>" isn't one of them.

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 10/31

Rising in abstraction
00e000

Reversing abstraction descent is approximate

Coverage (fictional)

C source code
Many compiler IRs

ISA/Assembly Skip an instruction 100%

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 11/31

Rising in abstraction
00e000

Reversing abstraction descent is approximate

Coverage (fictional)

C source code

Many compiler IRs Skip an IR instruction 85%
S
ISA/Assembly Skip an instruction 100%

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 11/31

[e]e] le]e]e]
Reversing abstraction descent is approximate

Coverage (fictional)

C source code Skip a C statement 10%
S

Many compiler IRs Skip an IR instruction 85%
-y

ISA/Assembly Skip an instruction 100%

SemSécuElec Seminar (Rennes, 2024-09-27)

Understanding and fighting fault injections with programming languages 11/31

[e]e] le]e]e]
Reversing abstraction descent is approximate

Coverage (fictional)

C source code Skip a C statement 10%
R
Many compiler IRs Skip an IR instruction 85%
S
ISA/Assembly Skip an instruction 100% (software)
Micro-architecture (hardware)
Gates/RTL

Electrical signals

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 11/31

[e]e] le]e]e]
Reversing abstraction descent is approximate

Coverage (fictional)

C source code Skip a C statement 10%
Many compiler IRs gkip an IR instruction 85%
ISA/Assemb-l-); gkip an instruction 100% (software)
Micro-architecture (hardware)
Gates/RTL
Electrical signals Glitch clock cycle

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 11/31

[e]e] le]e]e]
Reversing abstraction descent is approximate

Coverage (fictional)

C source code Skip a C statement 10%
Many compiler IRs gkip an IR instruction 85%
ISA/Assemb-l-); gkip an instruction 100% (software)
Micro-architecture (hardware)
Gates/RTL Fail to latch in time
Electrical signals (tlitch clock cycle

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 11/31

[e]e] le]e]e]
Reversing abstraction descent is approximate

Coverage (fictional)

C source code Skip a C statement 10%
Many compiler IRs gkip an IR instruction 85%
ISA/Assemb-l-); gkip an instruction 100% (software)
Micro-architecture Skip memory fetch (hardware)
Gates/RTL Iiail to latch in time
Electrical signals (tlitch clock cycle

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 11/31

Rising in abstraction
00e000

Reversing abstraction descent is approximate

Coverage (fictional)

C source code Skip a C statement 3%7 AA
Many compiler IRs gkip an IR instruction 25%7?
ISA/Assemb-I-); gkip an instruction 30%7?
Micro-architecture gkip memory fetch 50%7
Gates/RTL Iiail to latch in time 85%7?
Electrical signals (tlitch clock cycle 100%

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 11/31

Rising in abstraction
[e]e]e] lele)

Morality: the cost of rising in abstraction

Rising in abstraction is difficult and approximate.

» Hence the simplicity/accuracy compromise for fault models

Approximating undermines security guarantees:

» Software protections for models at assembly level bypassed with micro-arch abuse.
[Yuc+16]

Key target

We wish for models and countermeasures that minimize abstraction lifts.

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 12/31

Rising in abstraction
[e]e]e]e] o]

Language semantics to the rescue

C source code
Many compiler IRs

ISA/Assembly (software)

(hardware)

Micro-architecture

Gates/RTL

Electrical signals

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 13/31

Rising in abstraction
[e]e]e]e] o]

Language semantics to the rescue

C source code
Many compiler IRs

ISA/Assembly (software)

(hardware)

Micro-architecture
Behavior defined by
Gates/RTL physical objects and
physical equations

Electrical signals

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 13/31

Rising in abstraction
[e]e]e]e] o]

Language semantics to the rescue

C source code
Behavior defined by
Many compiler IRs program code and
language rules

ISA/Assembly (software)

(hardware)

Micro-architecture

Behavior defined by
Gates/RTL physical objects and
physical equations

Electrical signals

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 13/31

Context and plan Modeling faults

Rising in abstraction Fetch skips
000000 C

The countermeasure Implementation Conclusion

Language semantics to the rescue

C source code
Many compiler IRs

ISA/Assembly

Behavior defined by
program code and
language rules

Semantic rules

ALIGNED-16
PC aligned fetchsz(PC) = d
LSH(d) is a 16-bit instruction

(PC, &) — [LSH(d)](PC, a)

(software)

Micro-architecture

Gates/RTL

Electrical signals

SemSécuElec Seminar (Rennes, 2024-09-27)

Behavior defined by
physical objects and
physical equations

(hardware)

Understanding and fighting fault injections with programming languages 13/31

>ntext and plan Modeling faults

Rising in abstraction Fetch skips
[e]e]e]e] o] [e

The countermeasure Implementation Conclusion

Language semantics to the rescue

C source code
Many compiler IRs

ISA/Assembly

Express security
identically, with
no approximations?

Semantic rules

ALIGNED-16
PC aligned fetchsz(PC) = d
LSH(d) is a 16-bit instruction

(PC, &) — [LSH(d)](PC, a)

(software)

Micro-architecture

Gates/RTL

Electrical signals

SemSécuElec Seminar (Rennes, 2024-09-27)

Behavior defined by
physical objects and
physical equations

(hardware)

Understanding and fighting fault injections with programming languages 13/31

Rising in abstraction
[e]e]e]e]e])

In an ideal world... #

We'd love to:
1. Stop fault models’ approximations at assembly level or lower

2. Let software's math handle the complexity of generating secure code

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 14/31

xt and plan \ ling faults Rising in abstraction skips ountermeasure nentation

O0000e

In an ideal world... #

We'd love to:
1. Stop fault models’ approximations at assembly level or lower

2. Let software's math handle the complexity of generating secure code

In practice, still:
» Theoretical foundations for secure code generation not yet complete
» The math works on C and not much lower

» Older tech (languages/compilers) is not helping

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 14/31

Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion
[e]e]e]e} 000 [e]e]e]e]e]e) 0000 00000 [e]e]e]e} [e]e]

(4]
Fetch skips

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 14/31

Fetch skips
@000

What the paper’s about

» Study a low-level fault model
> “Fetch skips’, more accurate than instruction skips

» Design a proven countermeasure, aware of low-level behaviors
» Implemented in LLVM/Id, tested in QEMU

» Based on compiler/hardware collaboration

Novelties?
» Countermeasure to low-level model.
» Semantic model for proof.
» Multi-step hardening with compiler and linker.

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 15/31

Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

0e00)

Mechanisms of a low-level fault model: fetch skips.

g: | c.addi sp, sp, -16 c.sw ra, 12(sp) int g(int x) {
return f(x) + 1;

g+4: call f (call cont.) T

i 16-bit instructions
g+8: | c.addi a@, a0, 1 1w ra, 12(sp)] o]

Aligned 32-bit instructions
g+12: (1w cont.) addi sp, sp, 16 Unaligned 32-bit instructions
g+16: (addi cont.) c.ret
Aligned Unaligned

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 16/31

Fetch skips
[e] le]e}

Mechanisms of a low-level fault model: fetch skips.

g: | c.addi sp, sp, 16 | c.sw ra, 12(sp) Microarchitectural-level
S32 a2 {eatl-cont) » Skip 32 bits:
Skip a full row.
g+8: c.addi a9, a0, 1 1w ra, 12(sp) . .
v v » Skip and repeat 32 bits:

SEIEPN | c.addi ao, ae, 1 1w ra, 12(sp) Replace a row with predecessor.

+16: addi cont. c.ret
& () @ Found by Alshaer et al. [Als+22]

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 16/31

Fetch skips
[e] le]e}

Mechanisms of a low-level fault model: fetch skips.

g: | c.addi sp, sp,-16 | c.sw ra, 12(sp) Annoying consequences:
» Skip one instruction
S32 eat—f featieont;) » Skip two instructions
» Corrupt parameters
g+8: | c.addi a0, a0, T 1w ra, 12(sp) » Craft a new instruction
g+12: (1w cont.) addi sp, sp, 16 » Craft multiple instructions (!)
g+16: (addi cont.) c.ret

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 16/31

Fetch skips
[e] le]e}

Mechanisms of a low-level fault model: fetch skips.

=5 . ; > sp: Annoying consequences:
» Skip one instruction
g*d: call £ (call cont.) » Skip two instructions
» Corrupt parameters
g+8:| c.addi ae, a0, 1 lw ra, 12(sp) » Craft a new instruction
g+12: (1w cont.) addi sp, sp, 16 » Craft multiple instructions (!)
g+16: (addi cont.) c.ret

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 16/31

Fetch skips
[e] le]e}

Mechanisms of a low-level fault model: fetch skips.

g:| c.addi sp, sp,-16 | c.sw ra, 12(sp) Annoying consequences:
» Skip one instruction
g+ call f (call cont.) » Skip two instructions
» Corrupt parameters
g+8: | c.addi ao, a0, 1 lw ra, 12(sp) » Craft a new instruction
532 {hw-cont) addi—sp—sp—+6 » Craft multiple instructions (!)
g+16: (addi cont.) c.ret

— > 1w ra, 16(sp)

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 16/31

Fetch skips
[e] le]e}

Mechanisms of a low-level fault model: fetch skips.

g:| c.addi sp, sp,-16 | c.sw ra, 12(sp) Annoying consequences:

» Skip one instruction

g+é4: call f (call cont.) Skip two instructions

SEp| | eeddiaé et e 12€sp) Craft a new instruction

>
» Corrupt parameters
>
>

g+12: (1w cont.) addi sp, sp, 16 Craft multiple instructions (!)

g+16: (addi cont.) c.ret

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 16/31

Fetch skips
[e] le]e}

Mechanisms of a low-level fault model: fetch skips.

g:| c.addi sp, sp, -16 c.sw ra, 12(sp) Annoying consequences:

» Skip one instruction

g+é4: call f (call cont.) Skip two instructions

Sepl | eeddiatsaet tw—ra—+2(sp) Craft a new instruction

>
» Corrupt parameters
>
>

g+12: (1w cont.) addi sp, sp, 16 Craft multiple instructions (!)

g+16: (addi cont.) c.ret

]

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 16/31

Fetch skips
[e]e] Te}

We need to talk about security

..what is it?!

The countermeasure should make the program “secure’”.

Unresolved open problem

There is no single definition of security. It depends on the application.

Common examples: we may need that, in the event of a fault...
» The program operates as if not faulted
» The attack is detected and reported

» The program does not leak passwords
> ..

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 17/31

[eJele])
What security property can we achieve here?
» We inherently can't prevent the attack altogether. ¥

» Ideally: recovery, clean detection

» Here: denial of exploitation

Fetch skips hardening property

After a fetch skip, the program will stop/crash before the end of the current block.

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 18/31

[eJele])
What security property can we achieve here?
» We inherently can't prevent the attack altogether. ¥

» Ideally: recovery, clean detection

» Here: denial of exploitation

Fetch skips hardening property

After a fetch skip, the program will stop/crash before the end of the current block.

How?
1. Hardware will compute a checksum of each executed block.

2. Software will compare with expected value.

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 18/31

Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion
[e]e]e]e} 000 [e]e]e]e]e]e) [e]e]e]e} 00000 [e]e]e]e} [e]e]

The countermeasure

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 18/31

The countermeasure
@0000

The countermeasure: software / hardware opcode checksums.
e

g: | c.addi sp, sp, -16 c.sw ra, 12(sp) :| Original block, except jump

g+12: call f (call cont.)] Original jump

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 19/31

Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

@0000

The countermeasure: software / hardware opcode checksums.

[)
g: | c.addi sp, sp, -16 c.sw ra, 12(sp) Original block, except jump
g+4: ccscall (ccscall cont.) Checksum test (needed to jump @)
Sum of lines computed by linker. @
g+8: 0x354c 0xc606 Exception if mismatch at runtime.
g+12: call f (call cont.) Original jump
g+16: c.ebreak c.ebreak
, , ! | Wall of trap instructions
: | ! | Added by compiler. @
Prevents escape from block.
g+24: c.ebreak c.ebreak

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 19/31

Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

@0000

The countermeasure: software / hardware opcode checksums.

@
Binary encoding:
g: | c.addi sp, sp, -16 c.sw ra, 12(sp) —> 41 11 06 c6
g+4: ccscall (ccscall cont.) —————> + @b 24 00 00
g+8: 0x354c 0xCc606 [«— = 4c 35 06 c6
g+12: call f (call cont.)
g+16: c.ebreak c.ebreak
| | |
g+24: c.ebreak c.ebreak

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 19/31

Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

@0000

The countermeasure: software / hardware opcode checksums.

[]
g: | c.addi sp, sp, -16 c.sw ra, 12(sp) Intuition for security:
gt4: cescal1 BN (ccscall cont.)

Hardware traps on jump
g+8: 0x354c 0xC606 unless the previous instruction
was ccs/ccscall and it passed.

g+12: call f (call cont.)
g+16: c.ebreak c.ebreak]

i E i Too long to be jumped over (12 bytes)
g+24: c.ebreak c.ebreak

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 19/31

xt and plan \ ling faults ising in abstraction skips The countermeasure nentation

0@000

Key design points

[Hardware] RISC-V ISA extension:
» Updates a checksum register for each instruction executed
» One instruction for checksum tests, required before a jump

P As tiny as it gets

@ [Software] Compiler and linker:
» Provides checksum code and walls

» Linker computes checksums and shuts down two attacks by avoiding values that
decode as jumps or checksum instructions

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 20/31

xt and plan \ ling faults ising in abstraction skips The countermeasure nentation

0@000

Key design points

[Hardware] RISC-V ISA extension:
» Updates a checksum register for each instruction executed
» One instruction for checksum tests, required before a jump

P As tiny as it gets

@ [Software] Compiler and linker:
» Provides checksum code and walls

» Linker computes checksums and shuts down two attacks by avoiding values that
decode as jumps or checksum instructions

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 20/31

xt and plan e s g in abstraction h skips The countermeasure nentation

[e]e] le]e}

Come on, hardware support?!

This is a reasonable proposition:

» Security /s in the hardware design process
> Industrials are seeking ways to improve their hardware

» RISC-V is uniquely extensible/modular

» These are tricky attacks with (currently) no other solutions
» There's a rich “compromise” space mostly unexplored

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 21/31

Context and plan Modeling faults ing in abstraction Fetch skips The countermeasure Implementation

[e]e]e] lo}

Formalizing with semantics

Faulted executions are tricky: formal analysis is a necessity.
> Big idea: extend the semantics of assembler!

» Clears the abstraction gap
» Pulls in only low-level details that are really needed

NOFAULT » Fetch rules (left): describe the attack

(PC,p) a= [a] (PC,[a]) > Step rules (below): decoding and execution
1< k<N

— ALIGNED-16

(PC.p) a= [a+4k] (PC+ 4k, [a+4k]) PCaligned (PC,p) PC = d (PCr, /)

p# 4] 0.CCSDS =0 LSH(d) is a 16-bit instruction®

(PC7 p) a=p (PC, [a]) <PC7 P50, Oé) — [[LSH(d)H(PCF7 g, a) ° pl

()

SemSécuElec Seminar (Rennes, 2024-09-27 Understanding and fighting fault injections with programming languages 22/31
g g g)

The countermeasure
[e]e]e]e] }

Proof of security

Proven security guarantee

If you fetch skip, the program will stop/crash before the end of the current block.
Same for multi-fault attacks (if no checksum collision).

1. Execution only leaves a protected block when the checksum is correct.

» Cannot reach end of block due to trap wall.
> Before jumping a ccs is needed, and it can’t be forged.
> The official ccs/jump widget detects attacks.

2. Single-fault case: correct checksum implies no fault.

Note: might crash before end of block.

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 23/31

Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion
[e]e]e]e} 000 [e]e]e]e]e]e) [e]e]e]e} 00000 [e]e]e]e} [e]e]

6]

Implementation

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 23/31

xt and plan \ ling faults ising in abstraction skips ountermeasure Implementation

[Jele]e]

Compilers don’t know security (because C doesn’t)

int mac(int a, int b, int c¢) { » Vulnerable to instruction skip
return a + b * c;

}
Compiled for RISC-V again:

mac:
mul al, a2, al
add a0, a0, al
ret

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 24/31

xt and plan

ling faults

abstraction skips ountermeasure Implementation

[Jele]e]

Compilers don’t know security (because C doesn’t)

mac:
mul
mul
mv
mv
add
add
ret
ret

a3,
a3,
a4,
a4,
ao,
ao,

a2,
az,
a0
a0
a4,
a4,

SemSécuElec Seminar (Rennes, 2024-09-27)

» Vulnerable to instruction skip

al

al A countermeasure: duplicate instructions.
» Now secure!

a3

a3

Understanding and fighting fault injections with programming languages 24/31

xt and plan \ ling faults ising in abstraction skips ountermeasure Implementation

[Jele]e]

Compilers don’t know security (because C doesn’t)

in’F mac(int a, int b, int c¢) { » Vulnerable to instruction skip

int x, y;
=b * c;
b * c;
= a; » Not expressible at source level &

A countermeasure: duplicate instructions.

» Now securel!

= a;
=y+x;
=y+)(;
return a;
return a;

0 K X X

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 24/31

t and plan Modeling faults abstraction untermeasure Implementation Conclusion

[Jele]e]

Compilers don’t know security (because C doesn’t)

in? mac(int a, int b, int c) { » Vulnerable to instruction skip
nt x, y; A countermeasure: duplicate instructions.
X =b * c;
X =b *c; » Now secure!
y = a; » Not expressible at source level &
y = a; » Compiler optimizes it away &
a=y+x; p
a=y+x;
return a;
return a; mac:

3 mul al, a2, af

| add a0, a0, al
LLVM -01 ret

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 24/31

xt and plan \ ling faults ising in abstraction skips ountermeasure Implementation

0e00

Implementation: a multi-stage process

clang
| C source code | clang --target=riscv32 -march=rv32gc -mabi=ilp32d
-mcpu=generic-rv32-fsh
LLVM -mllvm --riscv-enable-fetch-skips-hardening
LLVM IR -c main.c -o main.o -01
SelectionDAG _—— MachineFunctionPass: ccs/trap emission + alignment
. ISSI I
Machine IR . . .
. l«—— Static relaxation: code size bounded
Object code <)]]) o
Emitter: Late jump expansion + relocation emission
Libraries Runtime
v GNU 1d

| Executable code |<— Relocation: Checksum computation and adjustment

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 25/31

Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion

) [e]e] o]

Experimental validation by simulation

» QEMU support for Xccs and fetch skip injection

% qemu-riscv32 -cpu rv32-fsh --riscv-faults '0x40000:s32' ./main
gemu: unhandled CPU exception 0x18 -aborting [...]

0x18: Attack detected

» -cpu rv32-fsh selects an Xccs-capable CPU ;
» -riscv-faults ’0x40000:s32’ skips the first 4 bytes.

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 26/31

Fetch skips The countermeasure Implementation
0000 ocooe

Context and plan Modeling faults Rising in abstraction

Experimental validation by simulation

MiBench [Gut+01] benchmarks)
1. Exhaustive skip ® Qttack dsucceZdEd ((2
2. Exhaustive double-skip Sttic | etected (~75%)

. . t
3. Exhaustive skip-and-repeat Oei au i
t
R. 2000 random multi-faults LW o E er cras
1 23R 1 23R
bitcount blowfish

(3015 faults) (3371 faults)

» 9 programs, 32’000 attacks reached, 0 bypass (0 checksum collision)
» Cost: ~10% time, average x2.46 space (similar work: x5 time and space)

These are very good because of the software/hardware combol!

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 27/31

Context and plan Modeling faults Rising in abstraction Fetch skips The countermeasure Implementation Conclusion
[e]e]e]e} 000 [e]e]e]e]e]e) [e]e]e]e} 00000 [e]e]e]e} [e]e]

Conclusion

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 27/31

Conclusion
[le]

Putting it all together

C source code
Many compiler IRs

ISA/Assembly

Micro-architecture
Gates/RTL
Electrical signals

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 28/31

Conclusion
[le]

Putting it all together

C source code
Many compiler IRs

ISA/Assembly

Micro-architecture Model: Skip memory fetch
A .
Fault analysis
Gates/RTL Model: Fail to latch in time ; Yo
? and modeling
Electrical signals Model: Glitch clock cycle

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 28/31

Conclusion
[le]

Putting it all together
C source code Security prop: true Securi
B ecurity
. . o — specification,
Many compiler IRs iecurlty prop: (internal definitions) hardening
compilatio
ISA/Assembly Security prop: stop before end of block mpration

Micro-architecture Model: Skip memory fetch

)

Fault analysi
Gates/RTL Model: Fail to latch in time ault analysts
A and modeling

Electrical signals Model: Glitch clock cycle

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 28/31

Conclusion
[le]

Putting it all together
C source code Security prop: true Securi
. ecurity
Many compiler IRs Security prop: (internal definitions) specification,

hardenin
v g

ilati
ISA/Assembly Security prop: stop before end of block compriation

ISA + encoding + fetch Security proof wrt model

Micro-architecture Model: Skip memory fetch

)

Fault analysi
Gates/RTL Model: Fail to latch in time ault analysts
A and modeling

Electrical signals Model: Glitch clock cycle

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 28/31

Conclusion
oe

Understanding and fighting

fault injections
with programming languages

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 29/31

Conclusion
oe

C)

Understanding and fighting

fault injections
with programming languages

Understanding:

» All a matter of crossing abstractions the right way, with formal support

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 29/31

Conclusion
oe

C)

Understanding and fighting

fault injections
with programming languages

C)

Understanding:

» All a matter of crossing abstractions the right way, with formal support
Fighting:
» Software fights for half the abstraction distance with hardening compilation

» Software/hardware combo has a lot to offer

» Deeper toolchain integration needed [Vu21]

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 29/31

Conclusion
oe

C)

Understanding and fighting

fault injections
with programming languages

C)

Understanding:

» All a matter of crossing abstractions the right way, with formal support

Fighting:
» Software fights for half the abstraction distance with hardening compilation
» Software/hardware combo has a lot to offer

» Deeper toolchain integration needed [Vu21]
Thoughts?

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 29/31

References

References |

[Als4+22] Ihab Alshaer et al. "Variable-Length Instruction Set: Feature or Bug?" In: Maspalomas,
Spain. [EEE, 2022. ISBN: 978-1-6654-7405-4. DOI: 10.1109/DSD57027 .2022.00068.

[Bar+06] H. Bar-El et al. “The Sorcerer's Apprentice Guide to Fault Attacks’. In: Proceedings of the
IEEE 94.2 (2006), pp. 370-382. DOI: 10.1109/JPROC. 2005.862424.

[Gut+01] M.R. Guthaus et al. “MiBench: A free, commercially representative embedded benchmark
suite”. In: Austin, TX, USA. Austin, TX, USA: IEEE, 2001, pp. 3-14. ISBN: 0-7803-7315-4.
DOI: 10.1109/WWC. 2001.990739.

[Lau20] Johan Laurent. “Modélisation de fautes utilisant la description RTL de microarchitectures
pour |'analyse de vulnérabilité conjointe matérielle-logicielle”. Theses. Université Grenoble
Alpes, Nov. 2020. URL: https://tel.archives-ouvertes.fr/tel-03167493.

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 30/31

https://doi.org/10.1109/DSD57027.2022.00068
https://doi.org/10.1109/JPROC.2005.862424
https://doi.org/10.1109/WWC.2001.990739
https://tel.archives-ouvertes.fr/tel-03167493

References

References 11

[MDG24] Sébastien Michelland, Christophe Deleuze, and Laure Gonnord. “From Low-Level Fault
Modeling (of a Pipeline Attack) to a Proven Hardening Scheme”. In: Proceedings of the
33rd ACM SIGPLAN International Conference on Compiler Construction. CC 2024. ,
Edinburgh, United Kingdom, Association for Computing Machinery, 2024, pp. 174-185.
ISBN: 9798400705076. DOI: 10.1145/3640537.3641570. URL:
https://doi.org/10.1145/3640537.3641570.

[Sol+21] Hadi Soleimany et al. “Practical multiple persistent faults analysis”. In: Cryptology ePrint
Archive (2021).

[Vu21] Son Tuan Vu. “Optimizing Property-Preserving Compilation”. 2021SORUS435. PhD thesis.
2021. URL: http://www. theses.fr/2021SORUS435/document.

[Yuc+16] Bilgiday Yuce et al. “Software Fault Resistance is Futile: Effective Single-Glitch Attacks”. In:
Santa Barbara, CA, USA. Santa Barbara, CA, USA: IEEE, 2016, pp. 47-58. ISBN:
978-1-5090-1109-4. DOI: 10.1109/FDTC.2016.21.

SemSécuElec Seminar (Rennes, 2024-09-27) Understanding and fighting fault injections with programming languages 31/31

https://doi.org/10.1145/3640537.3641570
https://doi.org/10.1145/3640537.3641570
http://www.theses.fr/2021SORUS435/document
https://doi.org/10.1109/FDTC.2016.21

	Context and plan
	Faults and fault models
	Rising in abstraction
	Fetch skips
	The countermeasure
	Implementation
	Conclusion
	Appendix
	References

