
Code-based postquantum cryptography :
candidates to standardization

—
Journées mise en œuvre d’implémentation de cryptographie

post-quantique

—
Rennes, April 23, 2021

—

Nicolas Sendrier

Prologue

Linear Codes for Telecommunication

linear expansion
data
k

-

decoding
data? �

codeword
n > k

noisy codeword �

?

noisy channel

[Shannon, 1948] (for a binary symmetric channel of error rate p):

Decoding probability −→ 1 if
k

n
= R < 1− h(p)

(h(p) = −p log2 p− (1− p) log2(1− p) the binary entropy function)

Codes of rate R can correct up to λn errors (λ = h−1(1−R))

For instance 11% of errors for R = 0.5

Non constructive −→ no poly-time algorithm for decoding in general

N. Sendrier – Code-Based Cryptography 1/39

Random Codes Are Hard to Decode

When the linear expansion is random:

• Decoding is NP-complete [Berlekamp, McEliece & van Tilborg,
78]

• Even the tiniest amount of error is (believed to be) hard to re-
move. Decoding nε errors is conjectured difficult on average for
any ε > 0 [Alekhnovich, 2003].

• All known generic decoding algorithm have an exponential com-
plexity even with access to a quantum computer

N. Sendrier – Code-Based Cryptography 2/39

Codes with Good Decoders Exist

Coding theory is about finding “good” codes (i.e. linear expansions)

• alternant codes have a poly-time decoder for Θ
(

n

logn

)
errors

• some classes of codes have a poly-time decoder for Θ(n) errors
(algebraic geometry, expander graphs, concatenation, . . .)

N. Sendrier – Code-Based Cryptography 3/39

Linear Codes for Cryptography

linear expansion
plaintext

k

-

decoding
plaintext �

codeword
n > k

ciphertext �

?

intentionally add errors

• If a random linear code is used, no one can decode efficiently
• If a “good” code is used, anyone who knows the structure has
access to a fast decoder

Assuming that the knowledge of the linear expansion does not reveal
the code structure:
• The linear expansion is public and anyone can encrypt
• The decoder is known to the legitimate user who can decrypt
• For anyone else, the code looks random

N. Sendrier – Code-Based Cryptography 4/39

Postquantum Cryptography

Need for Postquantum Cryptographic Primitives

Most of the public-key cryptography deployed today is vulnerable to
quantum computer (Shor, Grover, . . .)

For long term security, new cryptographic solutions are required for
public-key encryption, key exchange mechanisms, and digital signa-
tures

Scientific communities, governmental institutions, standardization bod-
ies throughout the world are aware of this

→ NIST call for postquantum primitives

N. Sendrier – Code-Based Cryptography 5/39

Postquantum Standardization

NIST call for postquantum primitives started in 2018

• Digital Signature

• Public-Key Encryption/Key Exchange

Three code-based candidates in NIST’s 3rd round (all Encryption/Key
Exchange):

• one finalist, Classic McEliece

• two alternate candidates, BIKE and HQC

N. Sendrier – Code-Based Cryptography 6/39

Code-Based Cryptography

McEliece Public-key Encryption Scheme – Overview

Let F be a family of t-error correcting q-ary linear [n, k] codes
e.g. irreducible binary Goppa codes [McEliece, 1978]

Key generation:

pick C ∈ F →

 Public Key: G ∈ Fk×nq , a generator matrix of C
Secret Key: Φ : Fnq → C, a t-bounded decoder

Encryption:

 EG : Fkq → Fnq
x 7→ xG+ e

 with e random of weight t

Decryption:

 DΦ : Fnq → Fkq ∪ {⊥}
xG+ e 7→ x

 derive x from
Φ(xG+ e) = xG

G ∈ Fk×nq a generator matrix: C =
{
xG | x ∈ Fkq

}
Φ is t-bounded: ∀(c, e) ∈ C × Fnq , |e| ≤ t⇒ Φ(c+ e) = c

N. Sendrier – Code-Based Cryptography 7/39

Niederreiter Public-key Encryption Scheme – Overview

Let F be a family of t-error correcting q-ary linear [n, k] codes
[Niederreiter, 1986]

Key generation: pick C ∈ F

→

 Public Key: H ∈ F(n−k)×n
q , a parity check matrix of C

Secret Key: Ψ : Frq → Fnq , a t-bounded H-syndrome decoder

Encryption:

 EH : Sn(0, t) → Fn−kq

e 7→ eHT



Decryption:

 DΨ : Fn−kq → Sn(0, t) ∪ {⊥}
eHT 7→ e = Ψ(eHT)


H ∈ F(n−k)×n

q a parity check matrix: C =
{
c ∈ Fnq | cHT = 0

}
Ψ is t-bounded: ∀e ∈ Fnq , |e| ≤ t⇒ Ψ(eHT) = e

N. Sendrier – Code-Based Cryptography 8/39

Instances of the
McEliece/Niederreiter Scheme

Irreducible Binary Goppa Codes

System parameters:
• m > 0 an integer → extension field F2m

• n ≤ 2m the code length
• 0 < t < n/m the error correcting capability
• k = n− tm the code dimension as a subspace of Fn2

Goppa code:
• g(x) ∈ F2m[x] monic, irreducible, of degree t
• L = (α1, . . . , αn) distinct elements of F2m

Γ(L, g) =
{
a ∈ Fn2 | aH̃

T = 0
}
, H̃ =



1
g(α1) · · ·

1
g(αn)

α1
g(α1) · · ·

αn
g(αn)

... ...
αt−1

1
g(α1) · · ·

αt−1
n

g(αn)



N. Sendrier – Code-Based Cryptography 9/39

Irreducible Binary Goppa Codes

Key generation:
• build a binary parity check matrix Ĥ ∈ Ftm×n2 from H̃

(each αij/g(αj) ∈ F2m in H̃ becomes a column vector in Fm2)
• Compute its systematic form H = (In−k | T) = SĤ

• Private key: (g, α1, . . . , αn) ∈ F2m[x]× Fn2m

• Public key: T ∈ F(n−k)×k
2

Decoding: in the polynomial ring F2m[x]

• Compute a syndrome S(z) =
2t−1∑
i=0

siz
i with si =

n−k∑
j=1

cjα
i
j

g(αj)2

• Solve the equation S(z)σ(z) = ω(z) mod z2t with

 degσ ≤ t
degω < t

• Find the roots of σ(z), the error e = (e1, . . . , en) ∈ Fn2 verifies

ej 6= 0⇔ σ(α−1
j) = 0

N. Sendrier – Code-Based Cryptography 10/39

Irreducible Binary Goppa Codes

ciphertext size in bits
m,n, k, t McEliece Niederreiter key size security

10,1024,524,50 1024 500 32 kB 52
12,4096,3424,56 4096 672 288 kB 128

13,8192,6528,128 8192 1664 1358 kB 256

Security assumptions:
• Pseudorandomness of Goppa codes
(the public key T is computationally indistinguishable from a ran-
dom uniform binary matrix of same size)
• Hardness of decoding
(decoding t errors in a random binary linear [n, k] code is in-
tractable)

→ Classic McEliece NIST proposal

N. Sendrier – Code-Based Cryptography 11/39

QC-MDPC Codes

Quasi-Cyclic Moderate Density Parity Check codes

Hsecret =

h0 h1

� � h0, h1 ∈ R = F2[x]/(xr − 1) sparse

Hpublic = �
h1

1
h = h−1

0 h1 ∈ R dense

binary circulant r × r matrices are isomorphic to R = F2[x]/(xr − 1)

The sparse parity check matrix Hsecret allows decoding

The dense parity check matrix Hpublic is indistinguishable from random

N. Sendrier – Code-Based Cryptography 12/39

QC-MDPC Codes

Quasi-Cyclic Moderate Density Parity Check codes

Hsecret =

h0 h1

� � , Hpublic = �
h1

1

System parameters:
• r the block size, n = 2r the code length
• w the row weight, w ≈

√
n

• t the error weight, t ≈
√
n

efficient decoding possible as long as w · t / n

Key generation:
• Private key: (h0, h1) ∈ R2, |h0| = |h1| = w/2

• Public key: h = h−1
0 h1 ∈ R

N. Sendrier – Code-Based Cryptography 13/39

QC-MDPC Codes

Bit Flipping Decoding:

Input: s ∈ Fr2, H ∈ Fr×n2 . Hj the j-th column of H
e← 0n

repeat
s′ ← s− eHT

T ← threshold(context)

for j = 1, . . . , n do
if
∣∣∣s′ ∩Hj∣∣∣ ≥ T then . # unsatisfied equations involving j

ej ← ej + 1

until s = eHT

return e

N. Sendrier – Code-Based Cryptography 14/39

QC-MDPC Codes

size in bits
r, w, t block key security

12 323,142,134 12 323 12 323 128
24 659,206,199 24 659 24 659 192
40 973,274,264 40 973 40 973 256

Security assumptions:
• Hardness of quasi-cyclic codeword finding
(the public key h is computationally indistinguishable from a ran-
dom uniform element of R)
• Hardness of quasi-cyclic decoding
(decoding t errors in a random binary quasi-cyclic [n, r] code is
intractable)

→ BIKE NIST proposal

N. Sendrier – Code-Based Cryptography 15/39

The Third Round Code-Based
NIST Candidates

The Third Round Code-Based NIST Candidates

• Classic McEliece

An instance of Niederreiter’s scheme using Goppa codes

• BIKE

An instance of Niederreiter’s scheme using QC-MDPC codes

• HQC

Derives from [Alekhnovich, 2003] rather than [McEliece, 78]

No trapdoor decoder, the secret is a sparse vector

N. Sendrier – Code-Based Cryptography 16/39

Classic McEliece KEM

Setup: parameters m,n, t, k = n−mt, `, hash function H with output
in {0,1}`

KeyGen Output: sk,pk
g

$← monic irreducible polynomials of degree t
(α1, . . . , αn) $← distinct elements of F2m

H̃ ←
(
αij/g(αj)

)
0≤i<t,1≤j≤n

. ∈ Ft×n2m

Ĥ ← expand(H̃) . ∈ Ftm×n2
H = ((In−k | T)← GaussElim(Ĥ) . if fail, restart from top

s
$←{0,1}`

sk = ((g, α1, . . . , αn), s) . we denote Γ = (g, α1, . . . , αn)
pk = T ∈ F(n−k)×k

2 . we denote H = (In−k | T)

Encaps Input: pk
Output: c = (c0, c1) ∈ Fn−k2 × {0,1}`, K ∈ {0,1}`

e
$←{e ∈ Fn2 | |e| = t}

c = (c0, c1)← (eHT ,H(2, e))
K ← H(1, e, c)

N. Sendrier – Code-Based Cryptography 17/39

Classic McEliece KEM

Decaps Input: sk, c = (c0, c1)

Output: K ∈ {0,1}`

e← GoppaDecode(c0,Γ)

if e = ⊥ or H(2, e) 6= c1 then K ← H(0, s, c) else K ← H(1, e, c)

GoppaDecode:
• Compute an algebraic syndrome (c0,Γ)→ S(z)

• Solve the key equation S(z)→ σ(z)

• Find the roots of σ(z)→ error locations

N. Sendrier – Code-Based Cryptography 18/39

BIKE

Setup: parameters r, w, t, `, hash functions K, L with output in {0,1}`

and H with output in {e = (e0, e1) ∈ R2 | |e0|+ |e1| = t}

KeyGen Output: sk,pk

(h0, h1) $←{(h0, h1) ∈ R2 | |h0| = |h1| = w/2}
h← h1h

−1
0

σ
$←{0,1}`

sk = ((h0, h1), σ)

pk = h

Encaps Input: pk

Output: c = (c0, c1) ∈ R× {0,1}`, K ∈ {0,1}`

m
$←{0,1}`

(e0, e1)← H(m)

c← (e0 + e1h,m⊕ L(e0, e1))

K ← K(m, c)

N. Sendrier – Code-Based Cryptography 19/39

BIKE

Decaps Input: sk, c = (c0, c1)

Output: K ∈ {0,1}`

e← decoder(c0h0, h0, h1)

m← c1 ⊕ L(e)

if e = H(m) then K ← K(m, c) else K ← K(σ, c)

decoder() is any variant of bit flipping decoding. It is prone to de-
coding failure. The decoding failure rate (DFR) is defined as

DFR(decoder) = Pr[(e0, e1) 6= decoder(e0h0 + e1h1, h0, h1)]

(probability over all errors (e0, e1) and all keys (h0, h1))

N. Sendrier – Code-Based Cryptography 20/39

HQC KEM

Let R = F2[X]/(Xn − 1), let Ew = {z ∈ R | |z| = w}

Setup: parameters n,w,we, wr, k, δ, hash function K with output in
{0,1}k and H with output in Ewe × E2

wr, G the generator matrix of a
δ-error correcting code

KeyGen Output: sk,pk
h

$←R
(x, y) $←E2

w
s← x+ hy

sk = (x, y)
pk = (h, s)

Encaps Input: pk
Output: (u, v) ∈ R2, K ∈ {0,1}k
m

$←{0,1}k
(e, r1, r2)← H(m) . |e| = we, |r1| = |r2| = wr, sparse
(u, v)← (r1 + hr2,mG+ sr2 + e)
K ← K(m, (u, v))

N. Sendrier – Code-Based Cryptography 21/39

HQC KEM

Decaps Input: sk, (u, v) ∈ R2

Output: K ∈ {0,1}k

m← decode(v − uy)

(e, r1, r2)← H(m)

if (u, v) 6= (r1 + hr2,mG+ sr2 + e) then abort
else K ← K(m, (u, v))

decode() is a decoder for the code C spanned by G. This code is part
of the system setup, it is public as well as its decoding procedure. It’s
failure rate however is relevant for the security analysis.

N. Sendrier – Code-Based Cryptography 22/39

Security

Ephemeral Keys versus Static Keys

Alice Bob

samples sk,pk

samples mm← Decsk(c)

pk

c = Encpk(m)

Shared key: K = Hash(m)

Ephemeral Keys: the key pair (sk,pk) is used only once
• allows forward secrecy
• decryption failure doesn’t impact security (IND-CPA is enough)
• only synchronous protocols (e.g. TLS)

Static Keys: the key pair (sk,pk) is used multiple times
• reduces communication cost
• decryption failure must be negligible (IND-CCA is required)
• allows asynchronous protocols (e.g. email)

N. Sendrier – Code-Based Cryptography 23/39

Security Models

IND-CPA

Indistinguishability under chosen plaintext attack

Guaranteed by computational assumptions alone

Enough for ephemeral keys

IND-CCA

Indistinguishability under adaptive chosen ciphertext attack

Requires negligible decryption failure

Relevant (only?) for static keys

N. Sendrier – Code-Based Cryptography 24/39

Security Assumptions

IND-CPA IND-CCA

Classic McEliece
• Pseudorandomness of
Goppa codes

• Hardness of decoding

• Pseudorandomness of
Goppa codes

• Hardness of decoding

BIKE

• Hardness of QC decoding

• Hardness of QC codeword
finding

• Hardness of QC decoding

• Hardness of QC codeword
finding

• Negligible decoding failure
(for QC-MDPC codes)

HQC
• Hardness of QC decoding • Hardness of QC decoding

• Negligible decoding failure
(for any code)

N. Sendrier – Code-Based Cryptography 25/39

Complexity

Space Complexity (IND-CCA Security)

pk size Block size Sec. level
261 KB 128 bytes 1

Classic McEliece 525 KB 188 bytes 3
1.3 MB 226 bytes 5

1 541 bytes 1 573 bytes 1
BIKE 3 083 bytes 3 115 bytes 3

5 122 bytes 5 154 bytes 5

3 125 bytes 6 234 bytes 1
HQC 5 884 bytes 11 752 bytes 3

8 897 bytes 17 778 bytes 5

N. Sendrier – Code-Based Cryptography 26/39

Time Complexity

Software:
• BIKE and HQC are comparable, with an advantage to BIKE
(ranges from a few 100k to a few mega cycles)
• Classic McEliece:
• key generation is ridiculously slow in software (several 100 mega
cycles)
• encaps/decaps are very fast (50k to a few 100k cycles)

Fair comparison is difficult, but third party implementation are ap-
pearing and things might clarify in the coming years

N. Sendrier – Code-Based Cryptography 27/39

Secure Implementation

Secure Implementations

All remaining code-based NIST candidates feature constant-time im-
plementation by design:
• specifications allow constant-time implementation
• constant-time optimized software implementation are available
(for some parameter sets)

N. Sendrier – Code-Based Cryptography 28/39

Classic McEliece – KeyGen

KeyGen
Output: sk,pk
g

$← monic irreducible polynomials of degree t
(α1, . . . , αn) $← distinct elements of F2m

H̃ ←
(
αij/g(αj)

)
0≤i<t,1≤j≤n

. ∈ Ft×n2m

Ĥ ← expand(H̃) . ∈ Ftm×n2
H = ((In−k | T)← GaussElim(Ĥ) . if fail, restart from top

s
$←{0,1}`

sk = ((g, α1, . . . , αn), s)
pk = T ∈ F(n−k)×k

2

Key operations:
• Arithmetic in the extension field F2m

• Gaussian elimination over a binary matrix is the bottleneck
> 3 failures on average → “Semi-systematic” form could avoid
that, implies an evolution of the specification

N. Sendrier – Code-Based Cryptography 29/39

Classic McEliece – Encaps

Encaps

Input: pk

Output: c = (c0, c1) ∈ Fn−k2 × {0,1}`, K ∈ {0,1}`

e
$←{e ∈ Fn2 | |e| = t}

c = (c0, c1)← (eHT ,H(2, e))

K ← H(1, e, c)

Key operations:
• Binary linear algebra

N. Sendrier – Code-Based Cryptography 30/39

Classic McEliece – Decaps

Decaps

Input: sk, c = (c0, c1)

Output: K ∈ {0,1}`

e← GoppaDecode(c0,Γ)

if e = ⊥ or H(2, e) 6= c1 then K ← H(0, s, c) else K ← H(1, e, c)

GoppaDecode:
1. Compute an algebraic syndrome (c0,Γ)→ S(z)

2. Solve the key equation S(z)→ σ(z)

3. Find the roots of σ(z)→ error locations

Key operations:
• Syndrome computation and root finding use an ad-hoc FFT
• Key equation is solved by the Berlekamp-Massey algorithm
• Permutation is implemented through a Beneš network

N. Sendrier – Code-Based Cryptography 31/39

BIKE – KeyGen

KeyGen

Output: sk,pk

(h0, h1) $←{(h0, h1) ∈ R2 | |h0| = |h1| = w/2}
h← h1h

−1
0

σ
$←{0,1}`

sk = ((h0, h1), σ)

pk = h

Key operations:
• Arithmetic in R = F2[x]/(xr − 1)

bottleneck is the inversion
• Sampling constant weight words

N. Sendrier – Code-Based Cryptography 32/39

BIKE – Encaps

Encaps

Input: pk

Output: c = (c0, c1) ∈ R× {0,1}`, K ∈ {0,1}`

m
$←{0,1}`

(e0, e1)← H(m)

c← (e0 + e1h,m⊕ L(e0, e1))

K ← K(m, c)

Key operations:
• Arithmetic in R = F2[x]/(xr − 1)

• sampling constant weight words (hash function H)

N. Sendrier – Code-Based Cryptography 33/39

BIKE – Decaps

Decaps

Input: sk, c = (c0, c1)

Output: K ∈ {0,1}`

e← decoder(c0h0, h0, h1)

m← c1 ⊕ L(e)

if e = H(m) then K ← K(m, c) else K ← K(σ, c)

Key operations:
• Arithmetic in R = F2[x]/(xr − 1)

• Sampling constant weight words (hash function H)
• Bit flipping decoding

N. Sendrier – Code-Based Cryptography 34/39

BIKE – Bit Flipping

Bit Flipping Decoding
Input: s ∈ Fr2, H ∈ Fr×n2
1: e← 0n

2: repeat a fixed number of times
3: s′ ← s− eHT

4: T ← threshold(context)
5: for j = 1, . . . , n do
6: if

∣∣∣s′ ∩Hj∣∣∣ ≥ T then
7: ej ← ej + 1

8: until
9: return e

The actual algorithm is different but key operation are the same:
• Syndrome update, instruction 3:
• Counters computation, instruction 6:
in practice all counters

∣∣∣s′ ∩Hj∣∣∣ are computed at once

N. Sendrier – Code-Based Cryptography 35/39

HQC KEM – KeyGen

KeyGen

Output: sk,pk

h
$←R

(x, y) $←E2
w

s← x+ hy

sk = (x, y)

pk = (h, s)

Key operations:
• Arithmetic in R = F2[x]/(xn − 1)

• Sampling constant weight words

N. Sendrier – Code-Based Cryptography 36/39

HQC KEM – Encaps

Encaps

Input: pk

Output: (u, v) ∈ R2, K ∈ {0,1}k

m
$←{0,1}k

(e, r1, r2)← H(m)

(u, v)← (r1 + hr2,mG+ sr2 + e)

K ← K(m, (u, v))

Key operations:
• Arithmetic in R = F2[x]/(xn − 1)

• (Linear algebra over F2)
• Sampling constant weight words

N. Sendrier – Code-Based Cryptography 37/39

HQC KEM – Decaps

Decaps Input: sk, (u, v) ∈ R2

Output: K ∈ {0,1}k

m← decode(v − uy)

(e, r1, r2)← H(m)

if (u, v) 6= (r1 + hr2,mG+ sr2 + e) then abort
else K ← K(m, (u, v))

Key operations:
• Arithmetic in R = F2[x]/(xn − 1)

• (Linear algebra over F2)
• Sampling constant weight words
• decoding in the code C spanned by G

N. Sendrier – Code-Based Cryptography 38/39

Conclusion

Code-based NIST candidates enjoy some nice features

• Specifications are simple

• Implementation are efficient

• Classic McEliece is well suited to static key

• BIKE and HQC are well suited to ephemeral key

N. Sendrier – Code-Based Cryptography 39/39

Thank you for your attention

