Sommaire

  • Cet exposé a été présenté le 04 octobre 2002.

Description

  • Orateur

    Jean-Charles Faugère - SPACES/LIP6/CNRS/Université Paris VI/INRIA

HFE (Hidden Fields Equations) est un cryptosystème à clef publique n'utilisant pas la théorie des nombres (comme RSA) mais des opérations sur les polynômes à coefficient dans un corps fini. Ce cryptosystème a été proposé par Jacques Patarin à Eurocrypt 96 en améliorant les idées de Matsumoto et Imai. Ce cryptosystème semblait très prometteur car il peut servir à générer des signatures très courtes: 128, 100 ou même 80 bits.<br/> L'idée de HFE est de prendre un polynôme univarié secret à coefficient dans GF(2^n) puis d'exprimer ce polynôme sur GF(2). On obtient ainsi un système algébrique en n variables (la clef publique).<br/> Retrouver le message original connaissant la clef secrète est «facile» puisque cela revient à résoudre un problème univarié. En revanche avec seulement la clef publique cela devient un problème très difficile puisqu'il s'agit de résoudre un système algébrique.<br/> Plusieurs cryptographes ont proposé des méthodes «nouvelles» pour résoudre ou étudier la complexité des systèmes algébriques sur les corps finis (Patarin, Shamir, Courtois, ...).<br/> Nous montrons dans cet exposé comment les nouveaux algorithmes (F5) de base de Gröbner permettent de:<br/> 1) dériver très facilement un algorithme spécialisé très efficace pour les corps finis.<br/> 2) casser assez facilement le Challenge proposé par J. Patarin (le challenge est un exemple réaliste en taille 80 bits).<br/> 3) mener une étude de complexité expérimentale pour les systèmes HFE. Par exemple si le degré du polynôme secret est < 129 la complexité du calcul est seulement $n^8$.<br/> 4) établir des bornes de complexité théorique très précises pour les systèmes algébriques dans un corps fini et en particulier l'équivalent de la borne de Macaulay $1 + \sum_i (d_i -1)$. (travail en collaboration avec B. Salvy et M. Bardet).<br/> Ces bornes théoriques sont particulièrement utiles pour comprendre la distinction entre un système aléatoire (difficile) et un système provenant de HFE (plus facile).

Prochains exposés

  • SoK: Security of the Ascon Modes

    • 20 juin 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Charlotte Lefevre - Radboud University

    The Ascon authenticated encryption scheme and hash function of Dobraunig et al (Journal of Cryptology 2021) were recently selected as winner of the NIST lightweight cryptography competition. The mode underlying Ascon authenticated encryption (Ascon-AE) resembles ideas of SpongeWrap, but not quite, and various works have investigated the generic security of Ascon-AE, all covering different attack[…]
  • Comprehensive Modelling of Power Noise via Gaussian Processes with Applications to True Random Number Generators

    • 27 juin 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Maciej Skorski - Laboratoire Hubert Curien

    The talk examines power noise modelling through Gaussian Processes for secure True Random Number Generators.   While revisiting one-sided fractional Brownian motion, we obtain novel contributions by quantifying posterior uncertainty in exact analytical form, establishing quasi-stationary properties, and developing rigorous time-frequency analysis. These results are applied to model oscillator[…]
    • Cryptography

    • TRNG

  • CryptoVerif: a computationally-sound security protocol verifier

    • 05 septembre 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Bruno Blanchet - Inria

    CryptoVerif is a security protocol verifier sound in the computational model of cryptography. It produces proofs by sequences of games, like those done manually by cryptographers. It has an automatic proof strategy and can also be guided by the user. It provides a generic method for specifying security assumptions on many cryptographic primitives, and can prove secrecy, authentication, and[…]
    • Cryptography

Voir les exposés passés