Sommaire

Description

  • Orateur

    Paul Kirchner - IRISA

Résumé : La cryptanalyse de schémas de cryptographie à clé publique repose sur un ensemble de techniques algorithmiques et algébriques en théorie des nombres. Dans une première partie de cette thèse, nous présentons des améliorations de l’algorithme LLL, dû à Lenstra, Lenstra et Lovasz pour réduire un réseau euclidien, c’est-à-dire réduire la norme et orthogonaliser le plus possible les vecteurs de la base. Nous montrons aussi comment utiliser cet algorithme pour réduire des réseaux modules en rang 2 dans un corps de nombres cyclotomique ayant des sous-corps. En effet, certains schémas comme NTRU ou Falcon, dont la sécurité repose sur ce problème difficile, ont été proposés en cryptographie post-quantique et pour du chiffrement homomorphe. Nous améliorons aussi les techniques d’algèbre linéaire creuse et proposons de meilleurs algorithmes lorsque la matrice est à diagonale dominante. Ces avancées nous permettent de réaliser de nouveaux records de calculs de corps de nombres : nombre de classes, générateurs du groupe des unités, générateur d’un idéal principal. Dans une seconde partie, nous étudions différents problèmes classiques en théorie des nombres : nous améliorons différents algorithmes pour tester la primalité d’un entier et en particulier, le test cyclotomique initialement proposé par Adleman et dernièrement développé par Mihailescu. Puis, nous étudions différents algorithmes dans un modèle dit de l’anneau boîte noire, c’est-à-dire que nous étudions le nombre d’additions et de multiplications dans l’anneau, sans nous intéresser à la façon de représenter et de faire les calculs dans cet anneau. Ceci nous permet dans le dernier chapitre, d’instancier ces algorithmes en fonction de différents anneaux pour proposer des algorithmes efficaces en cryptanalyse. Ce faisant, nous sommes capables de distribuer plus facilement les calculs de tout l’algorithme, alors que les algorithmes de calcul d’indice utilisent une étape d’algèbre linéaire qu’il est difficile de paralléliser.

Abstract: Cryptanalysis of public-key cryptosystems is based on algorithmic and algebraic techniques in number theory. In the first part of this thesis, we present improvements to the LLL algorithm, originally designed by Lenstra, Lenstra, and Lovász in the eighties to reduce a Euclidean lattice, i.e. to reduce the norm and orthogonalize the basis vectors as possible. We also show how to use this algorithm to reduce rank-2 module lattices in a cyclotomic number field with subfields using symplectic matrices. Indeed, some schemes such as NTRU or Falcon, whose security relies on this difficult problem, have been proposed in post-quantum cryptography and for homomorphic encryption. We also improve linear algebra techniques and propose better algorithms when the matrix is diagonally dominant. These advanced methods allow us to set new records in the computation of number fields class number, generators of the unit group and generator of a principal ideal. In the second part, we study various classical problems in number theory: we improve algorithms for testing the primality of an integer, and in particular, the cyclotomic test initially proposed by Adleman and developed by Mihailescu. Then, we study different algorithms in the black-box ring model, i.e. we study the number of additions and multiplications in the ring, without looking at how the elements are represented and how the computations are performed in the ring. This allows us in the final chapter to instantiate these algorithms in different rings in order to propose efficient algorithms for cryptanalysis. In doing so, we are able to more easily distribute the computations of the entire algorithm, while index-calculus algorithms use a linear algebra step which is difficult to parallelize.

Infos pratiques

  • Date

    23 mai 2025 (14:00 - 16:00)
  • Emplacement

    Amphi P, ISTIC, bâtiment 12D
  • Ajouter l'exposé à mon agenda

  • Video meet

    Pas de visio-conférence.

    Accèder à la visio-conférence

Prochains exposés

  • Comprendre le générateur sac-à-dos (et améliorer les attaques contre lui) / Understanding the Knapsack generator (and improving the attacks against it)

    • 16 mai 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Florette Martinez - Université Picardie Jules Verne

    Résumé : Le générateur sac-à-dos, présenté en 1985 est un générateur pseudo aléatoire annoncé sécurisé qui combine un générateur pseudo aléatoire non sécurisé et un problème dur. Une erreur de design repérée en 2011 permet à W. Meier et S. Knellwolf de retrouver une partie du secret mais les explications théoriques et heuristiques sont partielles. Dans cet exposé, je vais présenter une nouvelle[…]
  • Oblivious Transfer from Zero-Knowledge Proofs (or how to achieve round-optimal quantum Oblivious Transfer without structure)

    • 06 juin 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Léo Colisson - Université Grenoble Alpes

    We provide a generic construction to turn any classical Zero-Knowledge (ZK) protocol into a composable oblivious transfer (OT) protocol (the protocol itself involving quantum interactions), mostly lifting the round-complexity properties and security guarantees (plain-model/statistical security/unstructured functions…) of the ZK protocol to the resulting OT protocol. Such a construction is unlikely[…]
    • Cryptography

Voir les exposés passés