Sommaire

  • Cet exposé a été présenté le 08 février 2002.

Description

  • Orateur

    Qing Liu - Bordeaux

Soit A une variété abélienne de rang r sur un corps de nombres. Soit L(A,s) sa fonction L. La conjecture de Birch-Swinnerton-Dyer prévoit que quand s tend vers 1, L(A, s)/(s-1)^r tend vers une valeur qui dépend d'un certain nombre d'invariants arithmétiques de la variété. Le but de l'exposé sera d'expliquer comment calculer explicitement l'un de ces invariants, le nombre de Tamagawa. Par définition cela revient à trouver les points rationnels du groupe de composantes du modèle de Néron de A. Il s'agit d'un travail commun avec S. Bosch (Münster).

Prochains exposés

  • Oblivious Transfer from Zero-Knowledge Proofs (or how to achieve round-optimal quantum Oblivious Transfer without structure)

    • 06 juin 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Léo Colisson - Université Grenoble Alpes

    We provide a generic construction to turn any classical Zero-Knowledge (ZK) protocol into a composable oblivious transfer (OT) protocol (the protocol itself involving quantum interactions), mostly lifting the round-complexity properties and security guarantees (plain-model/statistical security/unstructured functions…) of the ZK protocol to the resulting OT protocol. Such a construction is unlikely[…]
    • Cryptography

Voir les exposés passés