Description
Formal methods have brought several approaches for proving that security protocols ensure the expected security and privacy properties. Most of the resulting tools analyze protocols in symbolic models, aka. Dolev-Yao-style models. Security in the symbolic model does not imply security in the cryptographer’s standard model, the computational model, where attackers are arbitrary (PPTIME) Turing machines. Computer-assisted verification techniques for the computational model have appeared only recently, and are generally less flexible or less automated than in the symbolic model. In some recent work, several colleagues and myself have proposed a new approach, elaborating on the CCSA logic of Gergei Bana and Hubert Comon. We have implemented it in a new proof assistant, Squirrel, and validated it on a variety of case studies. In this talk, I will present this approach, its benefits, and some of the remaining challenges.This is based on work with Stéphanie Delaune, Charlie Jacomme, Adrien Koutsos and Solène Moreau, which has been accepted at S&P’21.
Infos pratiques
Prochains exposés
-
Towards privacy-preserving and fairness-aware federated learning framework
Orateur : Nesrine Kaaniche - Télécom SudParis
Federated Learning (FL) enables the distributed training of a model across multiple data owners under the orchestration of a central server responsible for aggregating the models generated by the different clients. However, the original approach of FL has significant shortcomings related to privacy and fairness requirements. Specifically, the observation of the model updates may lead to privacy[…]-
Cryptography
-
SoSysec
-
Privacy
-
Machine learning
-
-
NEAT: A Nile-English Aligned Translation Corpus based on a Robust Methodology for Intent Based Networking and Security
Orateur : Pierre Alain - IUT de Lannion
The rise of Intent Based Networking (IBN) has paved the way for more efficient network and security management, reduced errors, and accelerated deployment times by leveraging AI processes capable of translating natural language intents into policies or configurations. Specialized neural networks could offer a promising solution at the core of translation operations. Still, they require dedicated,[…]-
SoSysec
-
Network
-
Security policies
-
-
Black-Box Collision Attacks on Widely Deployed Perceptual Hash Functions and Their Consequences
Orateur : Diane Leblanc-Albarel - KU Leuven
Perceptual hash functions identify multimedia content by mapping similar inputs to similar outputs. They are widely used for detecting copyright violations and illegal content but lack transparency, as their design details are typically kept secret. Governments are considering extending the application of these functions to Client-Side Scanning (CSS) for end-to-end encrypted services: multimedia[…]-
Cryptography
-
SoSysec
-
-
Malware Detection with AI Systems: bridging the gap between industry and academia
Orateur : Luca Demetrio - University of Genova
With the abundance of programs developed everyday, it is possible to develop next-generation antivirus programs that leverage this vast accumulated knowledge. In practice, these technologies are developed with a mixture of established techniques like pattern matching, and machine learning algorithms, both tailored to achieve high detection rate and low false alarms. While companies state the[…]-
SoSysec
-
Intrusion detection
-
Machine learning
-