Description
In this paper, a new approach for the detection of ransomware based on the runtime analysis of their behaviour is presented. The main idea is to get samples by using a mini-filter to intercept write requests, then decide if a sample corresponds to a benign or a malicious write request. To do so, in a learning phase, statistical models of structured file headers are built using Markov chains. Then in a detection phase, a maximum likelihood test is used to decide if a sample provided by a write request is normal or malicious. We introduce new statistical distances between two Markov chains, which are variants of the Kullback-Leibler divergence, which measure the efficiency of a maximum likelihood test to distinguish between two distributions given by Markov chains. This distance and extensive experiments are used to demonstrate the relevance of our method.
Infos pratiques
Prochains exposés
-
CHERIoT RTOS: An OS for Fine-Grained Memory-Safe Compartments on Low-Cost Embedded Devices
Orateur : Hugo Lefeuvre - The University of British Columbia
Embedded systems do not benefit from strong memory protection, because they are designed to minimize cost. At the same time, there is increasing pressure to connect embedded devices to the internet, where their vulnerable nature makes them routinely subject to compromise. This fundamental tension leads to the current status-quo where exploitable devices put individuals and critical infrastructure[…]-
SoSysec
-
Compartmentalization
-
Operating system and virtualization
-
Hardware/software co-design
-
Hardware architecture
-