Description
The main focus of this PhD thesis lies on the computational problem Learning With Errors (LWE). It is a core building block of lattice-based cryptography, which itself is among the most promising candidates to replace current cryptographic protocols once large-scale quantum computers may be available. The contributions of the present work are separated into two different parts. First, we study the hardness of structured variants of LWE. To this end, we show that under suitable parameter choices the Module Learning With Errors (M-LWE) problem doesn't become significantly easier to solve even if the underlying secret is replaced by a binary vector. Furthermore, we provide a classical hardness reduction for M-LWE, which further strengthens our confidence in its suitability for cryptography. Additionally, we define a new hardness assumption, the Middle-Product Computational Learning With Rounding (MP-CLWR) problem, which inherits the advantages of two existing LWE variants. Finally, we study problems related to the partial Vandermonde matrix. This is a recent source of hardness assumptions for lattice-based cryptography and its rigorous study is important to gain trust in it. In the second part of this manuscript, we show that the new hardness assumptions we introduced before serve for the construction of efficient public-key encryption. On the one hand, we design a new encryption scheme, whose security is provably based on the MP-CLWR problem. On the other hand, we modify an existing encryption scheme, called PASS Encrypt, to provide it with a security proof based on two explicitly stated partial Vandermonde problems.<br/> lien: https://youtu.be/Bu_PWWb63iU
Prochains exposés
-
SoK: Security of the Ascon Modes
Orateur : Charlotte Lefevre - Radboud University
The Ascon authenticated encryption scheme and hash function of Dobraunig et al (Journal of Cryptology 2021) were recently selected as winner of the NIST lightweight cryptography competition. The mode underlying Ascon authenticated encryption (Ascon-AE) resembles ideas of SpongeWrap, but not quite, and various works have investigated the generic security of Ascon-AE, all covering different attack[…] -
Comprehensive Modelling of Power Noise via Gaussian Processes with Applications to True Random Number Generators
Orateur : Maciej Skorski - Laboratoire Hubert Curien
The talk examines power noise modelling through Gaussian Processes for secure True Random Number Generators. While revisiting one-sided fractional Brownian motion, we obtain novel contributions by quantifying posterior uncertainty in exact analytical form, establishing quasi-stationary properties, and developing rigorous time-frequency analysis. These results are applied to model oscillator[…]-
Cryptography
-
TRNG
-
-
CryptoVerif: a computationally-sound security protocol verifier
Orateur : Bruno Blanchet - Inria
CryptoVerif is a security protocol verifier sound in the computational model of cryptography. It produces proofs by sequences of games, like those done manually by cryptographers. It has an automatic proof strategy and can also be guided by the user. It provides a generic method for specifying security assumptions on many cryptographic primitives, and can prove secrecy, authentication, and[…]-
Cryptography
-