Description
This talk focuses on a new variant of the Learning With Errors (LWE) problem, a fundamental computational problem used in lattice-based cryptography.<br/> At Crypto17, Roşca et al. introduced the Middle-Product LWE problem (MP-LWE), whose hardness is based on the hardness of the Polynomial LWE (P-LWE) problem parameterized by a large set of polynomials, making it more secure against the possible weakness of a single defining polynomial. As a cryptographic application, they also provided an encryption scheme based on the MP-LWE problem. In this talk, I present a deterministic variant of their encryption scheme, which does not need Gaussian sampling and is thus simpler than the original one. Still, it has the same quasi-optimal asymptotic key and ciphertext sizes. The hardness of the scheme is based on a new assumption called Middle-Product Computational Learning With Rounding. We prove that this new assumption is as hard as the decisional version of MP-LWE and thus benefits from worst-case to average-case hardness guarantees.<br/> lien: http://e-learning.sviesolutions.com/4bl7vxoqql0b
Prochains exposés
-
Predicting Module-Lattice Reduction
Orateur : Paola de Perthuis - CWI
Is module-lattice reduction better than unstructured lattice reduction? This question was highlighted as `Q8' in the Kyber NIST standardization submission (Avanzi et al., 2021), as potentially affecting the concrete security of Kyber and other module-lattice-based schemes. Foundational works on module-lattice reduction (Lee, Pellet-Mary, Stehlé, and Wallet, ASIACRYPT 2019; Mukherjee and Stephens[…]-
Cryptography
-
-
Séminaire C2 à INRIA Paris
Emmanuel Thomé et Pierrick Gaudry Rachelle Heim Boissier Épiphane Nouetowa Dung Bui Plus d'infos sur https://seminaire-c2.inria.fr/ -
Attacking the Supersingular Isogeny Problem: From the Delfs–Galbraith algorithm to oriented graphs
Orateur : Arthur Herlédan Le Merdy - COSIC, KU Leuven
The threat of quantum computers motivates the introduction of new hard problems for cryptography.One promising candidate is the Isogeny problem: given two elliptic curves, compute a “nice’’ map between them, called an isogeny.In this talk, we study classical attacks on this problem, specialised to supersingular elliptic curves, on which the security of current isogeny-based cryptography relies. In[…]-
Cryptography
-