Sommaire

  • Cet exposé a été présenté le 06 mars 2020.

Description

  • Orateur

    André Schrottenloher - INRIA

We present new classical and quantum algorithms for solving random hard instances of the subset-sum problem, in which we are given n integers on n bits and try to find a subset of them that sums to a given target. This classical NP-complete problem has several applications in cryptography and underlies the security of some proposed post-quantum cryptosystems.<br/> At EUROCRYPT 2010, Howgrave-Graham and Joux (HGJ) introduced the representation technique and presented an algorithm running in time $\bigOt{2^{0.337 n}}$. This asymptotic time was improved by Becker, Coron, Joux (BCJ) at EUROCRYPT 2011. We show how to improve this further.<br/> We then move to the context of quantum algorithms. The two previous quantum speedups in the literature are given by Bernstein, Jeffery, Lange and Meurer (PQCRYPTO 2013) and Helm and May (TQC 2018), which are respectively quantum versions of HGJ and BCJ. They both rely on the framework of quantum walks, use exponential quantum memory with quantum random-access and require an unproven conjecture on quantum walk updates. We devise a new algorithm, using quantum search only, that achieves the first quantum speedup in the model of \emph{classical} memory with quantum random access. Next, we study improvements for the quantum walks. We show how to avoid the quantum walk conjecture and give a better quantum walk time complexity for subset-sum.<br/> lien: http://desktop.visio.renater.fr/scopia?ID=725403***3883&autojoin

Prochains exposés

  • Présentations des nouveaux doctorants Capsule

    • 03 octobre 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Alisée Lafontaine et Mathias Boucher - INRIA Rennes

    2 nouveaux doctorants arrivent dans l'équipe Capsule et présenteront leurs thématiques de recherche. Alisée Lafontaine, encadrée par André Schrottenloher, présentera son stage de M2: "Quantum rebound attacks on double-block length hash functions"  Mathias Boucher, encadré par Yixin Shen, parlera de "quantum lattice sieving" 
  • Design of fast AES-based Universal Hash Functions and MACs

    • 10 octobre 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Augustin Bariant - ANSSI

    Ultra-fast AES round-based software cryptographic authentication/encryption primitives have recently seen important developments, fuelled by the authenticated encryption competition CAESAR and the prospect of future high-profile applications such as post-5G telecommunication technology security standards. In particular, Universal Hash Functions (UHF) are crucial primitives used as core components[…]
    • Cryptography

  • Lie algebras and the security of cryptosystems based on classical varieties in disguise

    • 07 novembre 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Mingjie Chen - KU Leuven

    In 2006, de Graaf et al. proposed a strategy based on Lie algebras for finding a linear transformation in the projective linear group that connects two linearly equivalent projective varieties defined over the rational numbers. Their method succeeds for several families of “classical” varieties, such as Veronese varieties, which are known to have large automorphism groups.   In this talk, we[…]
    • Cryptography

  • Some applications of linear programming to Dilithium

    • 14 novembre 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Paco AZEVEDO OLIVEIRA - Thales & UVSQ

    Dilithium is a signature algorithm, considered post-quantum, and recently standardized under the name ML-DSA by NIST. Due to its security and performance, it is recommended in most use cases.   During this presentation, I will outline the main ideas behind two studies, conducted in collaboration with Andersson Calle-Vierra, Benoît Cogliati, and Louis Goubin, which provide a better understanding of[…]
  • CryptoVerif: a computationally-sound security protocol verifier

    • 28 novembre 2025 (13:45 - 14:45)

    • Batiment 32B salle 12

    Orateur : Bruno Blanchet - Inria

    CryptoVerif is a security protocol verifier sound in the computational model of cryptography. It produces proofs by sequences of games, like those done manually by cryptographers. It has an automatic proof strategy and can also be guided by the user. It provides a generic method for specifying security assumptions on many cryptographic primitives, and can prove secrecy, authentication, and[…]
    • Cryptography

Voir les exposés passés