Sommaire

  • Cet exposé a été présenté le 17 janvier 2020.

Description

  • Orateur

    Guilhem Castagnos - Université Bordeaux 1

More than 30 years ago, Buchmann and Williams proposed using ideal class groups of imaginary quadratic fields in cryptography with a Diffie-Hellman style key exchange protocol. After several twists, there has been in recent years a new interest in this area. This rebirth is mainly due to two features. First, class groups of imaginary quadratic fields allow the design of cryptographic protocols that do not require a trusted setup. This particularity has been used for example to build cryptographic accumulators and verifiable delay functions. Secondly, using these groups, we proposed in 2015 a versatile encryption scheme, linearly homomorphic modulo a prime that has found many applications, for instance in secure two-party computation.<br/> In this talk, I will give an overview of cryptography based on class groups of imaginary quadratic fields and discuss recent developments.<br/> lien: http://desktop.visio.renater.fr/scopia?ID=727785***7248&autojoin

Prochains exposés

  • Verification of Rust Cryptographic Implementations with Aeneas

    • 13 février 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Aymeric Fromherz - Inria

    From secure communications to online banking, cryptography is the cornerstone of most modern secure applications. Unfortunately, cryptographic design and implementation is notoriously error-prone, with a long history of design flaws, implementation bugs, and high-profile attacks. To address this issue, several projects proposed the use of formal verification techniques to statically ensure the[…]
  • On the average hardness of SIVP for module lattices of fixed rank

    • 06 mars 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Radu Toma - Sorbonne Université

    In joint work with Koen de Boer, Aurel Page, and Benjamin Wesolowski, we study the hardness of the approximate Shortest Independent Vectors Problem (SIVP) for random module lattices. We use here a natural notion of randomness as defined originally by Siegel through Haar measures. By proving a reduction, we show it is essentially as hard as the problem for arbitrary instances. While this was[…]
  • Lightweight (AND, XOR) Implementations of Large-Degree S-boxes

    • 20 mars 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Marie Bolzer - LORIA

    The problem of finding a minimal circuit to implement a given function is one of the oldest in electronics. In cryptography, the focus is on small functions, especially on S-boxes which are classically the only non-linear functions in iterated block ciphers. In this work, we propose new ad-hoc automatic tools to look for lightweight implementations of non-linear functions on up to 5 variables for[…]
    • Cryptography

    • Symmetrical primitive

    • Implementation of cryptographic algorithm

  • Journées C2: pas de séminaire

    • 03 avril 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

  • Endomorphisms via Splittings

    • 10 avril 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Min-Yi Shen - No Affiliation

    One of the fundamental hardness assumptions underlying isogeny-based cryptography is the problem of finding a non-trivial endomorphism of a given supersingular elliptic curve. In this talk, we show that the problem is related to the problem of finding a splitting of a principally polarised superspecial abelian surface. In particular, we provide formal security reductions and a proof-of-concept[…]
    • Cryptography

Voir les exposés passés