Description
Supersingular isogeny graphs have been used in the Charles–Goren–Lauter cryptographic hash function and the supersingular isogeny Diffie–Hellman (SIDH) protocole of De\,Feo and Jao. A recently proposed alternative to SIDH is the commutative supersingular isogeny Diffie–Hellman (CSIDH) protocole, in which the isogeny graph is first restricted to $\FF_p$-rational curves $E$ and $\FF_p$-rational isogenies then oriented by the quadratic subring $\ZZ[\pi] \subset \End(E)$ generated by the Frobenius endomorphism $\pi: E \rightarrow E$. We introduce a general notion of orienting supersingular elliptic curves and their isogenies, and use this as the basis to construct a general oriented supersingular isogeny Diffie-Hellman (OSIDH) protocole.<br/> By imposing the data of an orientation by an imaginary quadratic ring $\OO$, we obtain an augmented category of supersingular curves on which the class group $\Cl(\OO)$ acts faithfully and transitively. This idea is already implicit in the CSIDH protocol, in which supersingular curves over $\FF_p$ are oriented by the Frobenius subring $\ZZ[\pi] \simeq \ZZ[\sqrt{-p}]$. In contrast we consider an elliptic curve $E_0$ oriented by a CM order $\OO_K$ of class number one. To obtain a nontrivial group action, we consider $\ell$-isogeny chains, on which the class group of an order $\OO$ of large index $\ell^n$ in $\OO_K$ acts, a structure we call a whirlpool. The map from $\ell$-isogeny chains to its terminus forgets the structure of the orientation, and the original base curve $E_0$, giving rise to a generic supersingular elliptic curve. Within this general framework we define a new oriented supersingular isogeny Diffie-Hellman (OSIDH) protocol, which has fewer restrictions on the proportion of supersingular curves covered and on the torsion group structure of the underlying curves. Moreover, the group action can be carried out effectively solely on the sequences of moduli points (such as $j$-invariants) on a modular curve, thereby avoiding expensive isogeny computations, and is further amenable to speedup by precomputations of endomorphisms on the base curve $E_0$.<br/> lien: http://desktop.visio.renater.fr/scopia?ID=721072***2120&autojoin
Prochains exposés
-
Séminaire C2 à INRIA Paris
Emmanuel Thomé et Pierrick Gaudry Rachelle Heim Boissier Épiphane Nouetowa Dung Bui Plus d'infos sur https://seminaire-c2.inria.fr/ -
Attacking the Supersingular Isogeny Problem: From the Delfs–Galbraith algorithm to oriented graphs
Orateur : Arthur Herlédan Le Merdy - COSIC, KU Leuven
The threat of quantum computers motivates the introduction of new hard problems for cryptography.One promising candidate is the Isogeny problem: given two elliptic curves, compute a “nice’’ map between them, called an isogeny.In this talk, we study classical attacks on this problem, specialised to supersingular elliptic curves, on which the security of current isogeny-based cryptography relies. In[…]-
Cryptography
-