Sommaire

  • Cet exposé a été présenté le 21 octobre 2016.

Description

  • Orateur

    Pooya Farshim - ENS Paris

We provide constructions of multilinear groups equipped with natural hard problems from indistinguishability obfuscation, homomorphic encryption, and NIZKs. This complements known results on the constructions of indistinguishability obfuscators from multilinear maps in the reverse direction.<br/> We provide two distinct, but closely related constructions and show that multilinear analogues of the DDH assumption hold for them. Our first construction is \emph{symmetric} and comes with a k-linear map e : G^k --> G_T for prime-order groups G and G_T. To establish the hardness of the k-linear DDH problem, we rely on the existence of a base group for which the (k - 1)-strong DDH assumption holds. Our second construction is for the \emph{asymmetric} setting, where e : G_1 x ... x G_k --> G_T for a collection of k + 1 prime-order groups G_i and G_T, and relies only on the standard DDH assumption in its base group. In both constructions the linearity k can be set to any arbitrary but a priori fixed polynomial value in the security parameter. We rely on a number of powerful tools in our constructions: (probabilistic) indistinguishability obfuscation, dual-mode NIZK proof systems (with perfect soundness, witness indistinguishability and zero knowledge), and additively homomorphic encryption for the group Z_N^{+}. At a high level, we enable "bootstrapping" multilinear assumptions from their simpler counterparts in standard cryptographic groups, and show the equivalence of IO and multilinear maps under the existence of the aforementioned primitives.

Prochains exposés

  • Verification of Rust Cryptographic Implementations with Aeneas

    • 13 février 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Aymeric Fromherz - Inria

    From secure communications to online banking, cryptography is the cornerstone of most modern secure applications. Unfortunately, cryptographic design and implementation is notoriously error-prone, with a long history of design flaws, implementation bugs, and high-profile attacks. To address this issue, several projects proposed the use of formal verification techniques to statically ensure the[…]
  • On the average hardness of SIVP for module lattices of fixed rank

    • 06 mars 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Radu Toma - Sorbonne Université

    In joint work with Koen de Boer, Aurel Page, and Benjamin Wesolowski, we study the hardness of the approximate Shortest Independent Vectors Problem (SIVP) for random module lattices. We use here a natural notion of randomness as defined originally by Siegel through Haar measures. By proving a reduction, we show it is essentially as hard as the problem for arbitrary instances. While this was[…]
  • Journées C2: pas de séminaire

    • 03 avril 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

  • Endomorphisms via Splittings

    • 10 avril 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Min-Yi Shen - No Affiliation

    One of the fundamental hardness assumptions underlying isogeny-based cryptography is the problem of finding a non-trivial endomorphism of a given supersingular elliptic curve. In this talk, we show that the problem is related to the problem of finding a splitting of a principally polarised superspecial abelian surface. In particular, we provide formal security reductions and a proof-of-concept[…]
    • Cryptography

Voir les exposés passés