Description
Les produits et puissances de codes linéaires sont une construction très basique sous-jacente à de nombreuses applications du codage en informatique théorique : algorithmes de multiplication et partage de secret arithmétique, cryptanalyse de systèmes à la McEliece, décodage algébrique, construction de réseaux euclidiens, codes quantiques, transfert inconscient... Un problème fondamental particulièrement difficile est la détermination des paramètres (dimension, distance) joints possibles d'un code et de son carré. On présentera ici essentiellement les seules bornes connues, avec un accent sur l'aspect asymptotique. La preuve de ces résultats mêle de façon intriquée combinatoire, algèbre multilinéaire, et géométrie algébrique.
Prochains exposés
-
Oblivious Transfer from Zero-Knowledge Proofs (or how to achieve round-optimal quantum Oblivious Transfer without structure)
Orateur : Léo Colisson - Université Grenoble Alpes
We provide a generic construction to turn any classical Zero-Knowledge (ZK) protocol into a composable oblivious transfer (OT) protocol (the protocol itself involving quantum interactions), mostly lifting the round-complexity properties and security guarantees (plain-model/statistical security/unstructured functions…) of the ZK protocol to the resulting OT protocol. Such a construction is unlikely[…]-
Cryptography
-