Description
The function field sieve, an algorithm of subexponential complexity L(1/3) that computes discrete logarithms in finite fields, has recently been improved to an L(1/4) algorithm, and subsequently to a quasi-polynomial time algorithm. Since index calculus algorithms for computing discrete logarithms in Jacobians of algebraic curves are based on very similar concepts and results, the natural question arises whether the recent improvements of the function field sieve can be applied in the context of algebraic curves. While we are not able to give a final answer to this question at this point, since this is work in progress, we discuss a number of ideas, experiments, and possible conclusions.
Prochains exposés
-
CryptoVerif: a computationally-sound security protocol verifier
Orateur : Bruno Blanchet - Inria
CryptoVerif is a security protocol verifier sound in the computational model of cryptography. It produces proofs by sequences of games, like those done manually by cryptographers. It has an automatic proof strategy and can also be guided by the user. It provides a generic method for specifying security assumptions on many cryptographic primitives, and can prove secrecy, authentication, and[…]-
Cryptography
-