Description
The GGH Graded Encoding Scheme (of Garg, Gentry and Halevi), based on ideal lattices, is the first plausible approximation to a cryptographic multilinear map. Unfortunately, using the security analysis the authors provided, the scheme requires very large parameters to provide security for its underlying encoding re-randomization process. Our main contributions are to formalize, simplify and improve the efficiency and the security analysis of the re-randomization process in the GGH construction. We apply these results in a new construction that we call GGHLite. In particular, we first lower the size of a standard deviation parameter of the re-randomization process from exponential to polynomial in the security parameter. This first improvement is obtained via a finer security analysis of the drowning step of re-randomization, in which we apply the Rényi divergence instead of the conventional statistical distance as a measure of distance between distributions. Our second improvement is to reduce the number of randomizers needed from Omega(n log n) to 2, where n is the dimension of the underlying ideal lattices. These two contributions allow us to decrease the bit size of the public parameters from O(lambda^5 log lambda) for the GGH scheme to O(lambda log^2 lambda)$ in GGHLite, with respect to the security parameter lambda for a constant multilinearity parameter.
Prochains exposés
-
Oblivious Transfer from Zero-Knowledge Proofs (or how to achieve round-optimal quantum Oblivious Transfer without structure)
Orateur : Léo Colisson - Université Grenoble Alpes
We provide a generic construction to turn any classical Zero-Knowledge (ZK) protocol into a composable oblivious transfer (OT) protocol (the protocol itself involving quantum interactions), mostly lifting the round-complexity properties and security guarantees (plain-model/statistical security/unstructured functions…) of the ZK protocol to the resulting OT protocol. Such a construction is unlikely[…]-
Cryptography
-