Description
Nous nous proposons de décrire nos travaux de thèse sur le calcul des polynômes modulaires en genre 2. Ces polynômes dépendent des invariants d'Igusa, qui sont une généralisation de la fonction j dans le genre 1, et permettent d'obtenir toutes les variétés abéliennes isogènes à une variété abélienne donnée. Dans un premier temps, nous reviendrons sur cette notion de polynôme en genre 1 et 2 et discuterons de leur calcul par une approche du type évaluation/interpolation. Dans un second temps, nous expliquerons comment généraliser ces polynômes à d'autres invariants et décrirons certaines de leurs propriétés, notamment le lien entre le dénominateur d'un coefficient du polynôme modulaire et les surfaces de Humbert.
Prochains exposés
-
Predicting Module-Lattice Reduction
Orateur : Paola de Perthuis - CWI
Is module-lattice reduction better than unstructured lattice reduction? This question was highlighted as `Q8' in the Kyber NIST standardization submission (Avanzi et al., 2021), as potentially affecting the concrete security of Kyber and other module-lattice-based schemes. Foundational works on module-lattice reduction (Lee, Pellet-Mary, Stehlé, and Wallet, ASIACRYPT 2019; Mukherjee and Stephens[…]-
Cryptography
-
-
Séminaire C2 à INRIA Paris
Emmanuel Thomé et Pierrick Gaudry Rachelle Heim Boissier Épiphane Nouetowa Dung Bui Plus d'infos sur https://seminaire-c2.inria.fr/ -
Attacking the Supersingular Isogeny Problem: From the Delfs–Galbraith algorithm to oriented graphs
Orateur : Arthur Herlédan Le Merdy - COSIC, KU Leuven
The threat of quantum computers motivates the introduction of new hard problems for cryptography.One promising candidate is the Isogeny problem: given two elliptic curves, compute a “nice’’ map between them, called an isogeny.In this talk, we study classical attacks on this problem, specialised to supersingular elliptic curves, on which the security of current isogeny-based cryptography relies. In[…]-
Cryptography
-