Description
Le crible algébrique est le meilleur algorithme connu pour factoriser les entiers et pour calculer des logarithmes discrets dans des corps finis de grande caractérsitique. Bien que la complexité théorique est la même dans les deux cas, la phase d'algèbre linéaire est bien plus difficile dans le cas du logarithme discret. En revanche, les corps finis non premiers ont plus de structure, si bien que de nombreuses améliorations sont disponibles. Dans cet exposé, nous tenterons de quantifier les difficultés relatives de la factorisation d'entiers, du logarithme discret dans un corps premier, et du logarithme discret dans des corps de la forme GF(p^2). Notre discussion s'appuiera sur des expériences pratiques pour des entrées de 600 bits. Bien que cette taille est désormais plus ou moins de la routine pour la factorisation, cela constitue de nouveaux records pour le logarithme discret dans les corps finis de grande caractéristique. Cet exposé s'appuie sur des travaux communs avec Bouvier, Imbert, Jeljeli, Thomé, Barbulescu, Guillevic, Morain.
Prochains exposés
-
Oblivious Transfer from Zero-Knowledge Proofs (or how to achieve round-optimal quantum Oblivious Transfer without structure)
Orateur : Léo Colisson - Université Grenoble Alpes
We provide a generic construction to turn any classical Zero-Knowledge (ZK) protocol into a composable oblivious transfer (OT) protocol (the protocol itself involving quantum interactions), mostly lifting the round-complexity properties and security guarantees (plain-model/statistical security/unstructured functions…) of the ZK protocol to the resulting OT protocol. Such a construction is unlikely[…]-
Cryptography
-