Sommaire

  • Cet exposé a été présenté le 25 avril 2014.

Description

  • Orateur

    Yoni De Mulder - University of Leuven

In the white-box attack context, i.e., the setting where an implementation of a cryptographic algorithm is executed on an untrusted open platform, the adversary has full access to the implementation and its execution environment. As a result, the adversary is much more powerful than in a traditional black-box environment in which the adversary has only access to the inputs and outputs of a cryptographic algorithm. For example, the adversary can make use of widely available tools such as disassemblers and debuggers with breakpoint functionality. An example of a white-box environment is a digital content protection system in which the client is implemented in software and executed on a PC, tablet, set-top box or a mobile phone. A malicious end-user may attempt to extract a secret key used for content decryption from the software. Next, the end-user may distribute this key to non-entitled end-users, or the end-user may use this key to decrypt the content directly, circumventing content usage rules. White-box cryptography aims to protect the confidentiality of the secret key of a cryptographic algorithm in a white-box environment. In particular, it is a technique to construct software implementations of a cryptographic algorithm that are sufficiently secure against a white-box attacker. These implementations are referred to as white-box implementations.<br/> In this talk, we elaborate on white-box cryptography in general (e.g., what are the main white-box security objectives and the typical attacker¿s goals in the white-box environment) and we discuss its application to AES. We start with the design of the first published white-box AES implementation by Chow et al. in 2002, and the efficient attack on this implementation by Billet et al. in 2004. Next, we discuss the design of two new white-box AES implementations claimed to be resistant against Billet et al.¿s attack, and we present practical attacks showing that none of these proposed countermeasures actually achieve white-box security. To conclude, we discuss a novel white-box technique proposed by Michiels and Gorissen in 2010 and share some thoughts about the future of white-box cryptography.

Prochains exposés

  • Verification of Rust Cryptographic Implementations with Aeneas

    • 13 février 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Aymeric Fromherz - Inria

    From secure communications to online banking, cryptography is the cornerstone of most modern secure applications. Unfortunately, cryptographic design and implementation is notoriously error-prone, with a long history of design flaws, implementation bugs, and high-profile attacks. To address this issue, several projects proposed the use of formal verification techniques to statically ensure the[…]
  • On the average hardness of SIVP for module lattices of fixed rank

    • 06 mars 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Radu Toma - Sorbonne Université

    In joint work with Koen de Boer, Aurel Page, and Benjamin Wesolowski, we study the hardness of the approximate Shortest Independent Vectors Problem (SIVP) for random module lattices. We use here a natural notion of randomness as defined originally by Siegel through Haar measures. By proving a reduction, we show it is essentially as hard as the problem for arbitrary instances. While this was[…]
  • Journées C2: pas de séminaire

    • 03 avril 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

  • Endomorphisms via Splittings

    • 10 avril 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Min-Yi Shen - No Affiliation

    One of the fundamental hardness assumptions underlying isogeny-based cryptography is the problem of finding a non-trivial endomorphism of a given supersingular elliptic curve. In this talk, we show that the problem is related to the problem of finding a splitting of a principally polarised superspecial abelian surface. In particular, we provide formal security reductions and a proof-of-concept[…]
    • Cryptography

Voir les exposés passés