Sommaire

  • Cet exposé a été présenté le 18 avril 2014.

Description

  • Orateur

    Nicolas Estibal - IRISA

La multiplication est une opération arithmétique coûteuse comparativement à l'addition. Aussi il est intéressant, étant donné une application, de minimiser le nombre de produits à effectuer pour la calculer. Dans cette étude, nous nous restreignons au cas des applications bilinéaires.<br/> En effet, parmi les applications bilinéaires, nous étions intéressés en premier lieu par la multiplication polynomiale. Ce problème ancien a déjà été très étudié. La première découverte fut celle de Karatsuba (1962) qui montra que l'on peut effectuer le produit de deux polynômes de degré~$2$ en n'utilisant que $3$ produits au lieu de $4$ avec l'algorithme quadratique. Puis Toom \& Cook (1963) montrèrent que $5$ multiplications suffisent à calculer le produit de polynômes de degré~$3$. En généralisant le problème aux polynômes de degré~$n$ fixé, on définit alors $M(n)$ le nombre minimal de produits à effectuer pour une telle multiplication. Le calcul de $M(n)$ est difficile et on ne dispose bien souvent que de bornes supérieures, de formules sans preuve de leur optimalité. En 2005, Montgomery effectua une recherche exhaustive de formules pour la multiplication de polynômes de degré~$5$ et trouva de nouvelles formules pour le degré~$6$ et ~$7$. Nous avons alors cherché à généraliser son approche et réduire son coût grâce à une formalisation en terme d'espace vectoriel. Nous présentons ainsi un algorithme permettant d'énumérer toutes les formules contenant exactement $k$ produits calculant une application bilinéaire. Cet algorithme permet de calculer le nombre minimal de produits à calculer pour certaines applications bilinéaires. Enfin, notre algorithme ne se restreignant pas au produit de polynômes, nous avons pu appliquer cet algorithme à d'autres problèmes tels que~: le produit court, la multiplication dans une extension de corps ou encore de matrices.

Prochains exposés

  • Verification of Rust Cryptographic Implementations with Aeneas

    • 13 février 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Aymeric Fromherz - Inria

    From secure communications to online banking, cryptography is the cornerstone of most modern secure applications. Unfortunately, cryptographic design and implementation is notoriously error-prone, with a long history of design flaws, implementation bugs, and high-profile attacks. To address this issue, several projects proposed the use of formal verification techniques to statically ensure the[…]
  • On the average hardness of SIVP for module lattices of fixed rank

    • 06 mars 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Radu Toma - Sorbonne Université

    In joint work with Koen de Boer, Aurel Page, and Benjamin Wesolowski, we study the hardness of the approximate Shortest Independent Vectors Problem (SIVP) for random module lattices. We use here a natural notion of randomness as defined originally by Siegel through Haar measures. By proving a reduction, we show it is essentially as hard as the problem for arbitrary instances. While this was[…]
  • Lightweight (AND, XOR) Implementations of Large-Degree S-boxes

    • 20 mars 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Marie Bolzer - LORIA

    The problem of finding a minimal circuit to implement a given function is one of the oldest in electronics. In cryptography, the focus is on small functions, especially on S-boxes which are classically the only non-linear functions in iterated block ciphers. In this work, we propose new ad-hoc automatic tools to look for lightweight implementations of non-linear functions on up to 5 variables for[…]
    • Cryptography

    • Symmetrical primitive

    • Implementation of cryptographic algorithm

  • Algorithms for post-quantum commutative group actions

    • 27 mars 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Marc Houben - Inria Bordeaux

    At the historical foundation of isogeny-based cryptography lies a scheme known as CRS; a key exchange protocol based on class group actions on elliptic curves. Along with more efficient variants, such as CSIDH, this framework has emerged as a powerful building block for the construction of advanced post-quantum cryptographic primitives. Unfortunately, all protocols in this line of work are[…]
  • Journées C2: pas de séminaire

    • 03 avril 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

  • Endomorphisms via Splittings

    • 10 avril 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Min-Yi Shen - No Affiliation

    One of the fundamental hardness assumptions underlying isogeny-based cryptography is the problem of finding a non-trivial endomorphism of a given supersingular elliptic curve. In this talk, we show that the problem is related to the problem of finding a splitting of a principally polarised superspecial abelian surface. In particular, we provide formal security reductions and a proof-of-concept[…]
    • Cryptography

Voir les exposés passés