Description
Nous présentons un algorithme à la Kedlaya pour compter les points de recouvrements cycliques $y^r = f(x)$ défini sur un corps fini de caractéristique $p$ ne divisant pas $r$, et avec $r$ et le degré de $f$ non nécessairement premiers entre eux.<br/> Cet algorithme généralise l'algorithme de Gaudry et Gürel pour les courbes superelliptiques à une classe de courbe plus générale, avec essentiellement la même complexité.<br/> De plus, nous apportons quelques améliorations pratiques telles que la simplification de l'algorithme en exploitant l'automorphisme de la courbe, des bornes sur la précision plus fine, ainsi qu'une pseudo-base de la cohomologie de Monsky--Washnitzer qui permet d'avoir une matrice à coefficients entiers lorsque $p > 2r$.<br/> Toutes ces améliorations peuvent de plus être appliquées à l'algorithme de Gaudry et Gürel.<br/> Nous présenterons en outre des applications numériques pour des recouvrements cycliques de grand genre.
Prochains exposés
-
Séminaire C2 à INRIA Paris
Emmanuel Thomé et Pierrick Gaudry Rachelle Heim Boissier Épiphane Nouetowa Dung Bui Plus d'infos sur https://seminaire-c2.inria.fr/ -
Attacking the Supersingular Isogeny Problem: From the Delfs–Galbraith algorithm to oriented graphs
Orateur : Arthur Herlédan Le Merdy - COSIC, KU Leuven
The threat of quantum computers motivates the introduction of new hard problems for cryptography.One promising candidate is the Isogeny problem: given two elliptic curves, compute a “nice’’ map between them, called an isogeny.In this talk, we study classical attacks on this problem, specialised to supersingular elliptic curves, on which the security of current isogeny-based cryptography relies. In[…]-
Cryptography
-