Sommaire

  • Cet exposé a été présenté le 20 septembre 2013.

Description

  • Orateur

    Jules Svartz - LIP6

La résolution de systèmes polynomiaux présentant des symétries est un problème naturel qui apparaît dans plusieurs contextes applicatifs (cryptographie, robotique, biologie, physique, codes correcteurs d'erreurs...) Les algorithmes usuels de calcul de bases de Gröbner détruisent en général ces symétries. Lorsque toutes les équations du système polynomial sont individuellement invariantes sous l'action d'un groupe, plusieurs approches peuvent-être envisagées pour tenir compte de cette action et accélérer le processus de résolution (théorie des invariants, bases de Gröbner SAGBI). Ces approches ont en commun de travailler dans l'algèbre des polynômes invariants sous l'action du groupe. Dans le cas général d'un système polynomial présentant des symétries, le cadre algébrique sous-jacent étant celui d'un idéal globalement invariant sous l'action d'un groupe, ces approches ne peuvent être utilisées. Dans cet exposé, nous nous plaçons dans ce cadre général, avec l'hypothèse que le groupe est abélien et que la caractéristique du corps ne divise pas le cardinal du groupe (cas non-modulaire). Sous ces hypothèses, il est possible de ramener l'étude du système polynomial à celui d'un système globalement invariant sous l'action d'un groupe diagonal munissant l'algèbre des polynômes d'une graduation. Cette structure additionnelle permet d'accélérer les algorithmes de calculs de bases de Gröbner basés sur l'algèbre linéaire (F4, F5,...) ainsi que l'algorithme de changement d'ordre (FGLM) dans le cas où le système présente un nombre fini de solutions. L'analyse de complexité passe par une étude asymptotique de la série de Hilbert associée à l'algèbre des invariants sous un groupe diagonal, et nous verrons qu'avec cette approche, certains problèmes deviennent résolubles en temps polynomial en la taille de l'entrée. D'une manière générale, cette approche permet de résoudre certains problèmes provenant d'applications auparavant inatteignables.

Prochains exposés

  • Verification of Rust Cryptographic Implementations with Aeneas

    • 13 février 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Aymeric Fromherz - Inria

    From secure communications to online banking, cryptography is the cornerstone of most modern secure applications. Unfortunately, cryptographic design and implementation is notoriously error-prone, with a long history of design flaws, implementation bugs, and high-profile attacks. To address this issue, several projects proposed the use of formal verification techniques to statically ensure the[…]
  • On the average hardness of SIVP for module lattices of fixed rank

    • 06 mars 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Radu Toma - Sorbonne Université

    In joint work with Koen de Boer, Aurel Page, and Benjamin Wesolowski, we study the hardness of the approximate Shortest Independent Vectors Problem (SIVP) for random module lattices. We use here a natural notion of randomness as defined originally by Siegel through Haar measures. By proving a reduction, we show it is essentially as hard as the problem for arbitrary instances. While this was[…]
  • Journées C2: pas de séminaire

    • 03 avril 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

  • Endomorphisms via Splittings

    • 10 avril 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Min-Yi Shen - No Affiliation

    One of the fundamental hardness assumptions underlying isogeny-based cryptography is the problem of finding a non-trivial endomorphism of a given supersingular elliptic curve. In this talk, we show that the problem is related to the problem of finding a splitting of a principally polarised superspecial abelian surface. In particular, we provide formal security reductions and a proof-of-concept[…]
    • Cryptography

Voir les exposés passés