Description
The "learning with errors'' (LWE) problem is to distinguish random linear equations, which have been perturbed by a small amount of noise, from truly uniform ones. The problem has been shown to be as hard as worst-case lattice problems, and in recent years it has served as the foundation for a plethora of cryptographic applications. Unfortunately, these applications are rather inefficient due to an inherent quadratic overhead in the use of LWE. A main open question was whether LWE and its applications could be made truly efficient by exploiting extra algebraic structure, as was done for lattice-based hash functions and related primitives.<br/> We resolve this question in the affirmative by introducing an algebraic variant of LWE called ring-LWE, and proving that it too enjoys very strong hardness guarantees. Specifically, we show that the ring-LWE distribution is *pseudorandom*, assuming that worst-case problems on ideal lattices are hard for polynomial-time quantum algorithms. This is joint work with Chris Peikert and Oded Regev that appeared at Eurocrypt 2010.
Prochains exposés
-
SoK: Security of the Ascon Modes
Orateur : Charlotte Lefevre - Radboud University
The Ascon authenticated encryption scheme and hash function of Dobraunig et al (Journal of Cryptology 2021) were recently selected as winner of the NIST lightweight cryptography competition. The mode underlying Ascon authenticated encryption (Ascon-AE) resembles ideas of SpongeWrap, but not quite, and various works have investigated the generic security of Ascon-AE, all covering different attack[…] -
Comprehensive Modelling of Power Noise via Gaussian Processes with Applications to True Random Number Generators
Orateur : Maciej Skorski - Laboratoire Hubert Curien
The talk examines power noise modelling through Gaussian Processes for secure True Random Number Generators. While revisiting one-sided fractional Brownian motion, we obtain novel contributions by quantifying posterior uncertainty in exact analytical form, establishing quasi-stationary properties, and developing rigorous time-frequency analysis. These results are applied to model oscillator[…]-
Cryptography
-
TRNG
-
-
CryptoVerif: a computationally-sound security protocol verifier
Orateur : Bruno Blanchet - Inria
CryptoVerif is a security protocol verifier sound in the computational model of cryptography. It produces proofs by sequences of games, like those done manually by cryptographers. It has an automatic proof strategy and can also be guided by the user. It provides a generic method for specifying security assumptions on many cryptographic primitives, and can prove secrecy, authentication, and[…]-
Cryptography
-