Description
Récemment Diem et Gaudry ont introduit indépendemment une méthode de résolution du DLP sur les courbes elliptiques définies sur un corps fini non premier K, de degré d'extension n > 1 sur le corps de base k. Cet algorithme repose sur le principe général du calcul d'indice. Une étape cruciale de cet algorithme nécessite de décomposer des points de la courbe E(K) selon une base de facteurs. C'est à dire, étant donné un point fixé R de E(K) trouver n points Pi, 0 < i < n+1, de la base de facteurs F (sous ensemble fixé de E(K)) tels que R = P1 + ... + Pn. Une méthode de résolution algébrique de ce problème consiste à modéliser cette somme sous forme d'un système polynomial et de le résoudre. À cette fin, Semaev introduit les polynômes de sommation qui projettent le problème de décomposition de points sur l'axe des abscisses. L'application d'une restriction de Weil de K à k sur un tel polynôme de sommation engendre un système à coefficients dans k à n équations et n inconnues, dont la résolution est équivalente à celle du problème de décomposition de point. Le coût de la résolution de ces systèmes est exponentiel en n et elle devient rapidement impossible. Il est donc nécessaire d'optimiser la résolution de ces systèmes. Un moyen est d'utiliser les symétries du problème de décomposition de points. Une symétrie naturelle de ce problème, lié à la commutativité de la loi de groupe sur les points de la courbe, est l'action du groupe symétrique Sn. Dans cet exposé, nous mettrons en évidence des symétries supplémentaires. Nous étudierons en particulier deux représentations de courbes -- les courbes d'Edwards et les intersections de Jacobi -- pour lesquelles ces nouvelles symétries se propagent sur les polynômes de sommation. Pour ces représentations, nous verrons également comment elles permettent de simplifier les systèmes polynomiaux à résoudre. Finalement nous présenterons quelques résultats pratiques montrant le gain apporté par l'utilisation des symétries.
Prochains exposés
-
Verification of Rust Cryptographic Implementations with Aeneas
Orateur : Aymeric Fromherz - Inria
From secure communications to online banking, cryptography is the cornerstone of most modern secure applications. Unfortunately, cryptographic design and implementation is notoriously error-prone, with a long history of design flaws, implementation bugs, and high-profile attacks. To address this issue, several projects proposed the use of formal verification techniques to statically ensure the[…] -
On the average hardness of SIVP for module lattices of fixed rank
Orateur : Radu Toma - Sorbonne Université
In joint work with Koen de Boer, Aurel Page, and Benjamin Wesolowski, we study the hardness of the approximate Shortest Independent Vectors Problem (SIVP) for random module lattices. We use here a natural notion of randomness as defined originally by Siegel through Haar measures. By proving a reduction, we show it is essentially as hard as the problem for arbitrary instances. While this was[…] -
Endomorphisms via Splittings
Orateur : Min-Yi Shen - No Affiliation
One of the fundamental hardness assumptions underlying isogeny-based cryptography is the problem of finding a non-trivial endomorphism of a given supersingular elliptic curve. In this talk, we show that the problem is related to the problem of finding a splitting of a principally polarised superspecial abelian surface. In particular, we provide formal security reductions and a proof-of-concept[…]-
Cryptography
-