Sommaire

  • Cet exposé a été présenté le 04 mars 2011.

Description

  • Orateur

    David Xiao - LRI

Imagine the government is taking a census, and you as an individual are worried that by participating, private information about you (such as your address, age, ethnicity, etc.) may eventually be revealed when the government publishes the census data. How can the government assure you that by using an appropriate release mechanism that "sanitizes" census data, no individual's privacy will be compromised?<br/> This question has been studied for a long time in the statistics community, and more recently the computer science community has contributed the formal notion of differential privacy, which captures the idea that "no individual's data can have a large effect on the output of the release mechanism". This has been interpreted to mean that individuals should be comfortable revealing their information, since little private information is leaked. In this talk, we first give an introduction to this fast-developing area of research. We then investigate the above interpretation about the guarantees of differential privacy. We argue that the interpretation is incomplete because unless participation in the database somehow explicitly benefits the individuals, they will always refuse to participate regardless of whether the release mechanism is differentially private or not. We then show that by combining differential privacy with the notion of incentives and truthfulness from game theory, one can take (almost) any release mechanism that motivates individuals to participate and modify it so that in addition it satisfies differential privacy.

Prochains exposés

  • Some applications of linear programming to Dilithium

    • 14 novembre 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Paco AZEVEDO OLIVEIRA - Thales & UVSQ

    Dilithium is a signature algorithm, considered post-quantum, and recently standardized under the name ML-DSA by NIST. Due to its security and performance, it is recommended in most use cases.   During this presentation, I will outline the main ideas behind two studies, conducted in collaboration with Andersson Calle-Vierra, Benoît Cogliati, and Louis Goubin, which provide a better understanding of[…]
  • Wagner’s Algorithm Provably Runs in Subexponential Time for SIS^∞

    • 21 novembre 2025 (13:45 - 14:45)

    • Salle Guernesey à l'ISTIC

    Orateur : Johanna Loyer - Inria Saclay

    At CRYPTO 2015, Kirchner and Fouque claimed that a carefully tuned variant of the Blum-Kalai-Wasserman (BKW) algorithm (JACM 2003) should solve the Learning with Errors problem (LWE) in slightly subexponential time for modulus q = poly(n) and narrow error distribution, when given enough LWE samples. Taking a modular view, one may regard BKW as a combination of Wagner’s algorithm (CRYPTO 2002), run[…]
    • Cryptography

  • CryptoVerif: a computationally-sound security protocol verifier

    • 28 novembre 2025 (13:45 - 14:45)

    • Batiment 32B salle 12

    Orateur : Bruno Blanchet - Inria

    CryptoVerif is a security protocol verifier sound in the computational model of cryptography. It produces proofs by sequences of games, like those done manually by cryptographers. It has an automatic proof strategy and can also be guided by the user. It provides a generic method for specifying security assumptions on many cryptographic primitives, and can prove secrecy, authentication, and[…]
    • Cryptography

  • Structured-Seed Local Pseudorandom Generators and their Applications

    • 05 décembre 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Nikolas Melissaris - IRIF

    We introduce structured‑seed local pseudorandom generators (SSL-PRGs), pseudorandom generators whose seed is drawn from an efficiently sampleable, structured distribution rather than uniformly. This seemingly modest relaxation turns out to capture many known applications of local PRGs, yet it can be realized from a broader family of hardness assumptions. Our main technical contribution is a[…]
    • Cryptography

Voir les exposés passés