Sommaire

  • Cet exposé a été présenté le 04 février 2011.

Description

  • Orateur

    Gaetan Bisson - LORIA

Soit S une suite d'éléments d'un groupe fini G noté multiplicativement ; le problème du sac à dos consiste à trouver une sous-suite de S dont le produit vaut un élément donné z de G. Des méthodes très efficaces pour le résoudre existent quand G=Z/nZ mais elles nous abandonnent lorsque l'on change de groupe : on peut en effet prouver qu'aucun algorithme générique (c'est-à-dire, en un sens, qui s'applique à tout groupe G) ne peut résoudre ce problème en moins de O(sqrt(#G)) opérations. Si une approche de type « pas de bébé, pas de géant » réussit avec pour complexité O(sqrt(#G)) en temps et en mémoire, il n'est pas évident de faire mieux. Dans un premier temps, cet exposé aura pour but d'expliquer comment adapter certaines idées de Pollard à ce contexte afin d'obtenir un algorithme en temps O(sqrt(#G)) et coût mémoire négligeable. Ensuite, nous présenterons certaines applications, notamment à la recherche d'isogénie entre deux courbes elliptiques.<br/> Ces travaux sont conjoints avec Andrew V. Sutherland.

Prochains exposés

  • Oblivious Transfer from Zero-Knowledge Proofs (or how to achieve round-optimal quantum Oblivious Transfer without structure)

    • 06 juin 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Léo Colisson - Université Grenoble Alpes

    We provide a generic construction to turn any classical Zero-Knowledge (ZK) protocol into a composable oblivious transfer (OT) protocol (the protocol itself involving quantum interactions), mostly lifting the round-complexity properties and security guarantees (plain-model/statistical security/unstructured functions…) of the ZK protocol to the resulting OT protocol. Such a construction is unlikely[…]
    • Cryptography

Voir les exposés passés