Description
En cryptographie, on souhaite protéger des messages. Et pour ce faire certains cryptosystèmes en cryptographie asymétrique utilisent les nombres premiers. Il est donc très utile de pouvoir déterminer la primalité de grands entiers. Le test AKS est un algorithme déterministe de preuve de primalité qui a été publié en Août 2002 par Agrawal, Kayal et Saxena ("Primes is in P"). L'algorithme ECPP (Elliptic Curves Primality Proving) est un test de primalité probabiliste. Il a été proposé par A.O.L Atkin en 1988 et c'est l'un des tests de primalité les plus efficaces utilisés en pratique. Dans cet exposé, nous donnerons un critère de primalité de type AKS utilisant les courbes elliptiques : le critère AKS elliptique. Après avoir rappelé les tests Miller-Rabin, AKS et ECPP, nous généraliserons le critère AKS en termes d'extension étale S de Z/nZ munie d?un automorphisme.<br/> L'illustration, sur un exemple simple, du critère AKS elliptique va clôturer l'exposé.
Prochains exposés
-
Oblivious Transfer from Zero-Knowledge Proofs (or how to achieve round-optimal quantum Oblivious Transfer without structure)
Orateur : Léo Colisson - Université Grenoble Alpes
We provide a generic construction to turn any classical Zero-Knowledge (ZK) protocol into a composable oblivious transfer (OT) protocol (the protocol itself involving quantum interactions), mostly lifting the round-complexity properties and security guarantees (plain-model/statistical security/unstructured functions…) of the ZK protocol to the resulting OT protocol. Such a construction is unlikely[…]-
Cryptography
-