Sommaire

  • Cet exposé a été présenté le 23 octobre 2009.

Description

  • Orateur

    Maria Naya - INRIA Rocquencourt

In this work, we apply the rebound attack to the AES based SHA-3 candidate LANE. The hash function LANE uses a permutation based compression function, consisting of a linear message expansion and 6 parallel lanes. In the rebound attack on LANE, we apply several new techniques to construct a collision for the full compression function of LANE-256 and LANE-512. Using a relatively sparse truncated differential path, we are able to solve for a valid message expansion and colliding lanes independently. Additionally, we are able to apply the inbound phase more than once by exploiting the degrees of freedom in the parallel AES states. This allows us to construct semi-free-start collisions for full LANE-256 with $2^{96}$ compression function evaluations and $2^{88}$ memory, and for full LANE-512 with $2^{224}$ compression function evaluations and $2^{128}$ memory. This is a joint work with K. Matusiewicz, I. Nikolic, Y. Sasaki and M. Schläffer.

Prochains exposés

  • CryptoVerif: a computationally-sound security protocol verifier

    • 05 septembre 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Bruno Blanchet - Inria

    CryptoVerif is a security protocol verifier sound in the computational model of cryptography. It produces proofs by sequences of games, like those done manually by cryptographers. It has an automatic proof strategy and can also be guided by the user. It provides a generic method for specifying security assumptions on many cryptographic primitives, and can prove secrecy, authentication, and[…]
    • Cryptography

Voir les exposés passés