Description
We cryptanalyse here two variants of the McEliece cryptosystem based on quasi-cyclic codes. Both aim at reducing the key size by restricting the public and secret generator matrices to be in quasi-cyclic form. The first variant considers subcodes of a primitive BCH code. The aforementioned constraint on the public and secret keys implies to choose very structured permutations. We prove that this variant is not secure by producing many linear equations that the entries of the secret permutation matrix have to satisfy by using the fact that the secret code is a subcode of a known BCH code. The secret permutation is then extracted by basically solving an over-constrained linear system. This attack has been implemented and in all experiments we have performed the solution space of the linear system was of dimension one and revealed the permutation matrix. The other variant uses quasi-cyclic low density parity-check codes. This scheme was devised to be immune against general attacks working for McEliece type cryptosystems based on low density parity-check codes by choosing in the McEliece scheme more general one-to-one mappings than permutation matrices. We suggest here a structural attack exploiting the quasi-cyclic structure of the code and a certain weakness in the choice of the linear transformations that hide the generator matrix of the code. This cryptanalysis adopts a polynomial-oriented approach and basically consists in searching for two polynomials of low weight such that their product is a public polynomial. Our analysis shows that with high probability a parity-check matrix of a punctured version of the secret code can be recovered with time complexity $O\left( n3 \right)$ where $n$ is the length of the considered code. The complete reconstruction of the secret parity-check matrix of the quasi-cyclic low density parity-check codes requires the search of codewords of low weight which can be done with about $2^{37}$ operations for the specific parameters proposed.
Prochains exposés
-
Présentations des nouveaux doctorants Capsule
Orateur : Alisée Lafontaine et Mathias Boucher - INRIA Rennes
2 nouveaux doctorants arrivent dans l'équipe Capsule et présenteront leurs thématiques de recherche. Alisée Lafontaine, encadrée par André Schrottenloher, présentera son stage de M2: "Quantum rebound attacks on double-block length hash functions" Mathias Boucher, encadré par Yixin Shen, parlera de "quantum lattice sieving" -
Design of fast AES-based Universal Hash Functions and MACs
Orateur : Augustin Bariant - ANSSI
Ultra-fast AES round-based software cryptographic authentication/encryption primitives have recently seen important developments, fuelled by the authenticated encryption competition CAESAR and the prospect of future high-profile applications such as post-5G telecommunication technology security standards. In particular, Universal Hash Functions (UHF) are crucial primitives used as core components[…]-
Cryptography
-
-
Lie algebras and the security of cryptosystems based on classical varieties in disguise
Orateur : Mingjie Chen - KU Leuven
In 2006, de Graaf et al. proposed a strategy based on Lie algebras for finding a linear transformation in the projective linear group that connects two linearly equivalent projective varieties defined over the rational numbers. Their method succeeds for several families of “classical” varieties, such as Veronese varieties, which are known to have large automorphism groups. In this talk, we[…]-
Cryptography
-
-
Some applications of linear programming to Dilithium
Orateur : Paco AZEVEDO OLIVEIRA - Thales & UVSQ
Dilithium is a signature algorithm, considered post-quantum, and recently standardized under the name ML-DSA by NIST. Due to its security and performance, it is recommended in most use cases. During this presentation, I will outline the main ideas behind two studies, conducted in collaboration with Andersson Calle-Vierra, Benoît Cogliati, and Louis Goubin, which provide a better understanding of[…] -
CryptoVerif: a computationally-sound security protocol verifier
Orateur : Bruno Blanchet - Inria
CryptoVerif is a security protocol verifier sound in the computational model of cryptography. It produces proofs by sequences of games, like those done manually by cryptographers. It has an automatic proof strategy and can also be guided by the user. It provides a generic method for specifying security assumptions on many cryptographic primitives, and can prove secrecy, authentication, and[…]-
Cryptography
-