Sommaire

  • Cet exposé a été présenté le 26 septembre 2008.

Description

  • Orateur

    Thomas Sirvent - IRMAR

L'objet de cette thèse est la diffusion numérique sécurisée réalisée à l'aide de courbes elliptiques. Elle se compose de quatre chapitres :<br/> Le premier chapitre est consacré au calcul de points de l-torsion sur une courbe elliptique définie sur un corps fini de caractéristique p. Plus précisément, nous combinons un algorithme rapide de calcul d'isogénies dû à Bostan, Morain, Salvy et Schost avec l'approche $p$-adique suivie par Joux et Lercier. Nous obtenons ainsi le premier algorithme valide sans limitation sur l et p dont la complexité est similaire à celle de l'algorithme proposé par Bostan et al.<br/> Dans le deuxième chapitre, nous développons un modèle générique de groupes avec couplage qui généralise les modèles présentés auparavant dans la littérature. Nous fournissons un cadre général permettant de prouver dans ce modèle les hypothèses cryptographiques reliées au problème du logarithme discret sur des groupes avec couplage.<br/> Dans le troisième chapitre, nous proposons et étudions un nouveau schéma de diffusion pour des récepteurs sans état. À la différence des schémas s'appuyant sur des techniques de recouvrement par des sous-ensembles définis par des arbres binaires, notre schéma considère que l'ensemble des récepteurs destinataires d'un message est décrit par des attributs. La taille du chiffré est linéaire en le nombre d'attributs utilisés dans cette description, mais ne dépend pas du nombre de destinataires. Par rapport à d'autres schémas basés sur des attributs, le déchiffrement nécessite des capacités de calculs bien plus faibles.<br/> Le dernier chapitre est consacré à un schéma de chiffrement avec traçage de traîtres, c'est-à-dire conçu pour lutter contre le piratage dans la distribution sécurisée de contenus vers de nombreux destinataires. Nous proposons un nouveau schéma, utilisant des techniques de marquage de contenu, présentant un taux de chiffrement constant et une sécurité contre des décodeurs pirates puissants. Une particularité de ce schéma est la possibilité pour un destinataire de déchiffrer à la volée le contenu transmis.

Prochains exposés

  • Verification of Rust Cryptographic Implementations with Aeneas

    • 13 février 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Aymeric Fromherz - Inria

    From secure communications to online banking, cryptography is the cornerstone of most modern secure applications. Unfortunately, cryptographic design and implementation is notoriously error-prone, with a long history of design flaws, implementation bugs, and high-profile attacks. To address this issue, several projects proposed the use of formal verification techniques to statically ensure the[…]
  • On the average hardness of SIVP for module lattices of fixed rank

    • 06 mars 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Radu Toma - Sorbonne Université

    In joint work with Koen de Boer, Aurel Page, and Benjamin Wesolowski, we study the hardness of the approximate Shortest Independent Vectors Problem (SIVP) for random module lattices. We use here a natural notion of randomness as defined originally by Siegel through Haar measures. By proving a reduction, we show it is essentially as hard as the problem for arbitrary instances. While this was[…]
  • Journées C2: pas de séminaire

    • 03 avril 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

  • Endomorphisms via Splittings

    • 10 avril 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Min-Yi Shen - No Affiliation

    One of the fundamental hardness assumptions underlying isogeny-based cryptography is the problem of finding a non-trivial endomorphism of a given supersingular elliptic curve. In this talk, we show that the problem is related to the problem of finding a splitting of a principally polarised superspecial abelian surface. In particular, we provide formal security reductions and a proof-of-concept[…]
    • Cryptography

Voir les exposés passés