Description
We present elliptic curves in Edwards form. Using this curve shape we benefit from very fast arithmetic. We will show the affine addition formulas as well as the fast projective formulas. A further speed-up is gained from using inverted coordinates. We will compare these to other coordinate systems which are derived from the Weierstrass normal form. In particular, we will show how Edwards curves relate to elliptic curves in Montgomery form. This leads to the notion of twisted Edwards curves which we will use to explain more about the geometric structure of Edwards curves.
Prochains exposés
-
Oblivious Transfer from Zero-Knowledge Proofs (or how to achieve round-optimal quantum Oblivious Transfer without structure)
Orateur : Léo Colisson - Université Grenoble Alpes
We provide a generic construction to turn any classical Zero-Knowledge (ZK) protocol into a composable oblivious transfer (OT) protocol (the protocol itself involving quantum interactions), mostly lifting the round-complexity properties and security guarantees (plain-model/statistical security/unstructured functions…) of the ZK protocol to the resulting OT protocol. Such a construction is unlikely[…]-
Cryptography
-