Sommaire

  • Cet exposé a été présenté le 20 juin 2008.

Description

  • Orateur

    Christiane Peters - Technische Universiteit Eindhoven

We present elliptic curves in Edwards form. Using this curve shape we benefit from very fast arithmetic. We will show the affine addition formulas as well as the fast projective formulas. A further speed-up is gained from using inverted coordinates. We will compare these to other coordinate systems which are derived from the Weierstrass normal form. In particular, we will show how Edwards curves relate to elliptic curves in Montgomery form. This leads to the notion of twisted Edwards curves which we will use to explain more about the geometric structure of Edwards curves.

Prochains exposés

  • Séminaire C2 à INRIA Paris

    • 16 janvier 2026 (10:00 - 17:00)

    • INRIA Paris

    Emmanuel Thomé et Pierrick Gaudry Rachelle Heim Boissier Épiphane Nouetowa Dung Bui Plus d'infos sur https://seminaire-c2.inria.fr/ 
  • Attacking the Supersingular Isogeny Problem: From the Delfs–Galbraith algorithm to oriented graphs

    • 23 janvier 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Arthur Herlédan Le Merdy - COSIC, KU Leuven

    The threat of quantum computers motivates the introduction of new hard problems for cryptography.One promising candidate is the Isogeny problem: given two elliptic curves, compute a “nice’’ map between them, called an isogeny.In this talk, we study classical attacks on this problem, specialised to supersingular elliptic curves, on which the security of current isogeny-based cryptography relies. In[…]
    • Cryptography

Voir les exposés passés