Sommaire

  • Cet exposé a été présenté le 15 février 2008.

Description

  • Orateur

    Jean-Marc Couveignes - Université Toulouse I

Les bases normales permettent de calculer rapidement l'action de Frobenius pour les extensions de corps finis : l'action de Galois se réduit à une permutation cyclique des coordonnées. En revanche, dans de telles bases, la multiplication est souvent difficile.<br/> Les périodes de Gauss permettent de construire des bases normales où la multiplication est assez facile. Mais elle n'existent pas pour toutes les extensions, et ne sont pas toujours efficaces, même quand elles existent. En utilisant la théorie de Kummer des courbes elliptiques on montre qu'il existe pour toute extension de corps finis une base normale (ou quelque chose de très semblable) qui permet de multiplier rapidement (et même très rapidement). La construction repose sur des identités entre fonctions elliptiques, sur l'étude de l'action de Galois sur les points des courbes elliptiques, et sur des résultats classiques de théorie de la complexité (concernant en particulier le calcul des produits de convolution).

Prochains exposés

  • CryptoVerif: a computationally-sound security protocol verifier

    • 05 septembre 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Bruno Blanchet - Inria

    CryptoVerif is a security protocol verifier sound in the computational model of cryptography. It produces proofs by sequences of games, like those done manually by cryptographers. It has an automatic proof strategy and can also be guided by the user. It provides a generic method for specifying security assumptions on many cryptographic primitives, and can prove secrecy, authentication, and[…]
    • Cryptography

Voir les exposés passés