Description
Les bases normales permettent de calculer rapidement l'action de Frobenius pour les extensions de corps finis : l'action de Galois se réduit à une permutation cyclique des coordonnées. En revanche, dans de telles bases, la multiplication est souvent difficile.<br/> Les périodes de Gauss permettent de construire des bases normales où la multiplication est assez facile. Mais elle n'existent pas pour toutes les extensions, et ne sont pas toujours efficaces, même quand elles existent. En utilisant la théorie de Kummer des courbes elliptiques on montre qu'il existe pour toute extension de corps finis une base normale (ou quelque chose de très semblable) qui permet de multiplier rapidement (et même très rapidement). La construction repose sur des identités entre fonctions elliptiques, sur l'étude de l'action de Galois sur les points des courbes elliptiques, et sur des résultats classiques de théorie de la complexité (concernant en particulier le calcul des produits de convolution).
Prochains exposés
-
Oblivious Transfer from Zero-Knowledge Proofs (or how to achieve round-optimal quantum Oblivious Transfer without structure)
Orateur : Léo Colisson - Université Grenoble Alpes
We provide a generic construction to turn any classical Zero-Knowledge (ZK) protocol into a composable oblivious transfer (OT) protocol (the protocol itself involving quantum interactions), mostly lifting the round-complexity properties and security guarantees (plain-model/statistical security/unstructured functions…) of the ZK protocol to the resulting OT protocol. Such a construction is unlikely[…]-
Cryptography
-