Sommaire

  • Cet exposé a été présenté le 26 octobre 2007.

Description

  • Orateur

    Robert Carls - University of Ulm

This talk is about joint work with David Lubicz. By a classical result of Serre and Tate the deformation space of an ordinary abelian variety is given by a formal torus. In Serre-Tate coordinates the problem of canonical lifting is trivial. Unfortunately, in general it is difficult to compute the Serre-Tate parameters of a given abelian variety. Alternatively, one may use canonical coordinates which are induced by a canonical theta structure. Mumford introduced theta structures in order to construct an arithmetic moduli space of abelian varieties. We apply a multi-variate Hensel lifting procedure to a certain set of p-adic theta identities which are obtained using Mumford's formalism of algebraic theta functions. As an application we give a point counting algorithm for ordinary abelian varieties over a finite field which is quasi-quadratic in the degree of the finite field.

Prochains exposés

  • Oblivious Transfer from Zero-Knowledge Proofs (or how to achieve round-optimal quantum Oblivious Transfer without structure)

    • 06 juin 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Léo Colisson - Université Grenoble Alpes

    We provide a generic construction to turn any classical Zero-Knowledge (ZK) protocol into a composable oblivious transfer (OT) protocol (the protocol itself involving quantum interactions), mostly lifting the round-complexity properties and security guarantees (plain-model/statistical security/unstructured functions…) of the ZK protocol to the resulting OT protocol. Such a construction is unlikely[…]
    • Cryptography

Voir les exposés passés