Description
Achieving secure and reliable communication in a wireless network is especially challenging when the end devices are energy constrained. Traditionally, forward error correcting codes (FECs) and encryption have been used to correct errors and provide secrecy respectively, in a tandem system. This conventional approach could be potentially less efficient than a joint system (where both functionalities are combined into a single paradigm). The key question is: can the two operations be combined safely and if so what are the impacts of such a joint construction on both error correction capability as well as security?<br/> In this talk we will show that it is indeed possible to combine error correction and encryption in the specific case of block ciphers. The core of this construction is a new class of maximum distance separable (MDS) codes, which we call high diffusion (HD) codes, that incorporate both a criterion for optimal diffusion as well as a criterion for error correction. We will present the fundamental ideas behind HD codes and discuss the construction of the codes and block ciphers based on these codes. Security and error correction capabilities of the joint system will be discussed. Stream mode construction of the cipher will also be presented along with some simulation results.
Prochains exposés
-
Verification of Rust Cryptographic Implementations with Aeneas
Orateur : Aymeric Fromherz - Inria
From secure communications to online banking, cryptography is the cornerstone of most modern secure applications. Unfortunately, cryptographic design and implementation is notoriously error-prone, with a long history of design flaws, implementation bugs, and high-profile attacks. To address this issue, several projects proposed the use of formal verification techniques to statically ensure the[…] -
On the average hardness of SIVP for module lattices of fixed rank
Orateur : Radu Toma - Sorbonne Université
In joint work with Koen de Boer, Aurel Page, and Benjamin Wesolowski, we study the hardness of the approximate Shortest Independent Vectors Problem (SIVP) for random module lattices. We use here a natural notion of randomness as defined originally by Siegel through Haar measures. By proving a reduction, we show it is essentially as hard as the problem for arbitrary instances. While this was[…] -
Lightweight (AND, XOR) Implementations of Large-Degree S-boxes
Orateur : Marie Bolzer - LORIA
The problem of finding a minimal circuit to implement a given function is one of the oldest in electronics. In cryptography, the focus is on small functions, especially on S-boxes which are classically the only non-linear functions in iterated block ciphers. In this work, we propose new ad-hoc automatic tools to look for lightweight implementations of non-linear functions on up to 5 variables for[…]-
Cryptography
-
Symmetrical primitive
-
Implementation of cryptographic algorithm
-
-
Algorithms for post-quantum commutative group actions
Orateur : Marc Houben - Inria Bordeaux
At the historical foundation of isogeny-based cryptography lies a scheme known as CRS; a key exchange protocol based on class group actions on elliptic curves. Along with more efficient variants, such as CSIDH, this framework has emerged as a powerful building block for the construction of advanced post-quantum cryptographic primitives. Unfortunately, all protocols in this line of work are[…] -
Endomorphisms via Splittings
Orateur : Min-Yi Shen - No Affiliation
One of the fundamental hardness assumptions underlying isogeny-based cryptography is the problem of finding a non-trivial endomorphism of a given supersingular elliptic curve. In this talk, we show that the problem is related to the problem of finding a splitting of a principally polarised superspecial abelian surface. In particular, we provide formal security reductions and a proof-of-concept[…]-
Cryptography
-