Description
Le problème (SVP) de trouver un vecteur non nul le plus court d'un réseau de $\R^n$ de dimension $d$ est un problème très classique ; au cours des dix dernières années, de nombreux travaux ont montré des bornes inférieures sur la complexité de ce problème. Ces résultats sont à la base des arguments de sécurité d'un certain nombre de cryptosystèmes (Ajtai-Dwork, NTRU). Le meilleur algorithme pratique pour ce problème, dû à Kannan, consiste à énumérer des points dans un ellipsoïde. Son analyse consiste classiquement à borner le nombre de points par le volume, qui est à son tour estimé par le volume du pavé circonscrit, donnant une complexité de $\tilde{O}(d^{d/2(1+o(1))})$. Nous montrons qu'une analyse plus fine conduit \`a une complexit\'e de $\tilde{O}(d^{d/(2e)(1+o(1))})$; ce résultat permet également d'améliorer la complexité des algorithmes de recherche du vecteur le plus proche (CVP), ou de calcul de bases "blocs-réduites" à la Schnorr.
Prochains exposés
-
Séminaire C2 à INRIA Paris
Emmanuel Thomé et Pierrick Gaudry Rachelle Heim Boissier Épiphane Nouetowa Dung Bui Plus d'infos sur https://seminaire-c2.inria.fr/ -
Attacking the Supersingular Isogeny Problem: From the Delfs–Galbraith algorithm to oriented graphs
Orateur : Arthur Herlédan Le Merdy - COSIC, KU Leuven
The threat of quantum computers motivates the introduction of new hard problems for cryptography.One promising candidate is the Isogeny problem: given two elliptic curves, compute a “nice’’ map between them, called an isogeny.In this talk, we study classical attacks on this problem, specialised to supersingular elliptic curves, on which the security of current isogeny-based cryptography relies. In[…]-
Cryptography
-