Description
Let p be a small prime number, F a field of characteristic p and extension degree n, and E a hyperelliptic curve over F. In cryptography one tries to exploit the hardness of determining a discrete logarithm on the jacobian of such curves. In order to achieve this it is important to know what the size of this jacobian is. This parameter can be deduced from the zeta function of the curve.<br/> We will present algorithms to compute this zeta function for curves in one parameter families. The advantage of such `deformation' algorithms, when compared with Kedlaya's classical algorithm, is mainly a dramatically reduced memory usage, although a decrease in time requirements is attainable as well. We will also show the results of an implementation of such an algorithm.
Prochains exposés
-
Séminaire C2 à INRIA Paris
Emmanuel Thomé et Pierrick Gaudry Rachelle Heim Boissier Épiphane Nouetowa Dung Bui Plus d'infos sur https://seminaire-c2.inria.fr/ -
Attacking the Supersingular Isogeny Problem: From the Delfs–Galbraith algorithm to oriented graphs
Orateur : Arthur Herlédan Le Merdy - COSIC, KU Leuven
The threat of quantum computers motivates the introduction of new hard problems for cryptography.One promising candidate is the Isogeny problem: given two elliptic curves, compute a “nice’’ map between them, called an isogeny.In this talk, we study classical attacks on this problem, specialised to supersingular elliptic curves, on which the security of current isogeny-based cryptography relies. In[…]-
Cryptography
-