Sommaire

  • Cet exposé a été présenté le 31 mars 2006.

Description

  • Orateur

    Philippe Gaborit - Université de Limoges

Dans cet exposé nous nous intéressons à l'interpolation polynomiale multivariée et à ses applications. Nous présenterons tout d'abord des applications connues comme le décodage en liste des codes de Reed-Solomon (pour lequel Madhu Sudan a recu le prix Nevanlinna), mais aussi des applications nouvelles comme le décodage en liste des effacements des codes de Reed-Muller ou encore l'application au calcul de l'immunité algebrique. Ce dernier concept a de trés forte aplications en cryptographie pour contrer les attaques algébriques qui récemment ont permis d'obtenir des attaques trés efficaces sur les registres linéaires filtrés, utilisés pour le chiffrement à flot ou sur certains systèmes à clé symétrique. Ensuite nous présenterons un nouvel algorithme qui permet d'effectuer l'interpolation polynomiale multivariée à plusieurs variables en temps quadratique, améliorant la complexité cubique connue jusqu'ici pour résoudre certains des problèmes précédents. Nous nous interesserons aussi au cas des attaques algebriques rapides.

Prochains exposés

  • Verification of Rust Cryptographic Implementations with Aeneas

    • 13 février 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Aymeric Fromherz - Inria

    From secure communications to online banking, cryptography is the cornerstone of most modern secure applications. Unfortunately, cryptographic design and implementation is notoriously error-prone, with a long history of design flaws, implementation bugs, and high-profile attacks. To address this issue, several projects proposed the use of formal verification techniques to statically ensure the[…]
  • On the average hardness of SIVP for module lattices of fixed rank

    • 06 mars 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Radu Toma - Sorbonne Université

    In joint work with Koen de Boer, Aurel Page, and Benjamin Wesolowski, we study the hardness of the approximate Shortest Independent Vectors Problem (SIVP) for random module lattices. We use here a natural notion of randomness as defined originally by Siegel through Haar measures. By proving a reduction, we show it is essentially as hard as the problem for arbitrary instances. While this was[…]
  • Journées C2: pas de séminaire

    • 03 avril 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

  • Endomorphisms via Splittings

    • 10 avril 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Min-Yi Shen - No Affiliation

    One of the fundamental hardness assumptions underlying isogeny-based cryptography is the problem of finding a non-trivial endomorphism of a given supersingular elliptic curve. In this talk, we show that the problem is related to the problem of finding a splitting of a principally polarised superspecial abelian surface. In particular, we provide formal security reductions and a proof-of-concept[…]
    • Cryptography

Voir les exposés passés