Sommaire

  • Cet exposé a été présenté le 16 décembre 2005.

Description

  • Orateur

    Yaacov Kopeliovich

In this talk we apply Thomae formulas to obtain algebraic relations satisfied by Riemann surfaces that are cyclic covers of the Sphere. We focus on the genus 2 case and then give an example of a higher genus case (g=4) that was not known before. The conjectural connection of these identities as well as Thomae formulas to the moduli action of the Braid group is explained.<br/> We present a programming challenge to fully solve the g=4 problem.

Prochains exposés

  • Oblivious Transfer from Zero-Knowledge Proofs (or how to achieve round-optimal quantum Oblivious Transfer without structure)

    • 06 juin 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Léo Colisson - Université Grenoble Alpes

    We provide a generic construction to turn any classical Zero-Knowledge (ZK) protocol into a composable oblivious transfer (OT) protocol (the protocol itself involving quantum interactions), mostly lifting the round-complexity properties and security guarantees (plain-model/statistical security/unstructured functions…) of the ZK protocol to the resulting OT protocol. Such a construction is unlikely[…]
    • Cryptography

Voir les exposés passés