Sommaire

  • Cet exposé a été présenté le 09 décembre 2005.

Description

  • Orateur

    Gerhard Frey - Essen University

Groups of prime order with a bilinear structure are interesting objects for public key cryptography. In the first part of the lecture we shall explain how the pairing on points of the Jacobian variety which is usually called "Tate-pairing" can be got in a p- adic setting by the Lichtenbaum pairing. On the one hand side this setting gives us more freedom for its computation which leads to more efficiency if the genus of the underlying curve is larger than 1.<br/> On the other side it shows that the Brauer groups of local fields arises in a natural way in the world of discrete logarithms based on ideal class groups. This, and the great importance of Brauer groups for number theory, motivates that one should try to investigate them computationally. In the second part of the lecture we shall present index-calculus methods for Brauer groups with applications to the classical discrete logarithm and to the computation of Euler's totient function.

Prochains exposés

  • Oblivious Transfer from Zero-Knowledge Proofs (or how to achieve round-optimal quantum Oblivious Transfer without structure)

    • 06 juin 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Léo Colisson - Université Grenoble Alpes

    We provide a generic construction to turn any classical Zero-Knowledge (ZK) protocol into a composable oblivious transfer (OT) protocol (the protocol itself involving quantum interactions), mostly lifting the round-complexity properties and security guarantees (plain-model/statistical security/unstructured functions…) of the ZK protocol to the resulting OT protocol. Such a construction is unlikely[…]
    • Cryptography

Voir les exposés passés